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Abstract

A simultaneous item auction is a simple procedure for allocating multiple indivisible goods to
a set of bidders. In a simultaneous auction, every bidder submits bids on all items simultaneously.
The allocation and prices are then resolved for each item separately, based solely on the bids
submitted on that item. Such procedures are similar to auctions used in practice (e.g. eBay)
but are not incentive compatible. We study the efficiency of Bayesian Nash equilibrium (BNE)
outcomes of simultaneous first- and second-price auctions when bidders have complement-free
(a.k.a. subadditive) valuations. We show that the expected social welfare of any BNE is at least
1
2 of the optimal social welfare in the case of first-price auctions, and at least 1

4 in the case of
second-price auctions. These results improve upon the previously-known logarithmic bounds,
which were established by Hassidim et al. (2011) for first-price auctions and by Bhawalkar and
Roughgarden (2011) for second-price auctions.

JEL Classification: D440 Auctions. D610 Allocative Efficiency; Cost-Benefit Analysis.
C720 Noncooperative games. D820 Asymmetric and Private Information; Mechanism Design.

1 Introduction

The central problem in algorithmic mechanism design is to determine how best to allocate resources
among individuals, while respecting both computational constraints and the individual incentives
of the participants. As Internet-powered marketplaces become increasingly large and complex,
computational scalability becomes an ever more important criterion for auction design. Indeed,
while the mechanism design literature has led to the development of mechanisms that solve incen-
tive constraints for a variety of allocation scenarios, many of these methods tend to be complex (in
both the computational and colloquial sense) and are rarely used in practice. Instead, it is com-
mon to forego theoretically appealing methods and use simpler mechanisms with weaker incentive
properties. For example, the Vickrey-Clarke-Groves (VCG) mechanism is a socially efficient and
incentive compatible auction format that applies to many resource allocation problems, but this
mechanism is rarely used in practice. Instead, the dominant auction formats tend to be simplistic
ones that do not admit dominant strategies. Canonical examples are the generalized second price
(GSP) auction for online advertising (Edelman et al., 2005; Varian, 2007) and the ascending price
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auction for electromagnetic spectrum allocation (Milgrom, 1998). Given that such simple auctions
are used in practice, it is of crucial importance to determine how they perform when used by
rational (and strategic) agents.

We can think of such auction scenarios more abstractly as the problem of resolving a combi-
natorial auction. In such a problem there is a large set M of m objects for sale, and n potential
buyers. Each buyer has a private value function vi : 2M → R≥0 mapping sets of objects to their
associated values. The goal of the market designer is to decide how to allocate the objects among
the buyers to maximize the overall social efficiency. One approach would be to elicit the valuation
function from each bidder, then attempt to solve the resulting optimization problem. However, in
many existing online marketplaces (such as eBay), buyers do not express their (potentially com-
plex) preferences directly. Rather, each item is auctioned independently, and a buyer is forced to
bid separately on individual items. This approach is simple and natural, and relieves the burden
of expressing a potentially complex valuation function. On the other hand, this limited expressive-
ness could potentially lead to unpredictable bidding behavior and inefficient outcomes. This begs
the question: how well does the outcome of simultaneous item auctions approximate the socially
optimal allocation?

In order to evaluate the performance of different auction mechanisms, we take the economic
viewpoint that self-interested agents will apply bidding strategies at equilibrium, so that no agent
can unilaterally improve his outcome by changing his strategy. We apply a quantitative approach,
and ask how well the performance at equilibrium approximates the socially optimal outcome. Since
there may potentially be multiple equilibria, we will bound the performance in the worst case over
equilibria. Put another way, our approach is to follow a recent line of work using price of anarchy
as a performance measure for the analysis of mechanisms. The price of anarchy of a mechanism is
the maximum ratio between the social welfare under an optimal allocation and the welfare at an
equilibrium, with the same valuation profile.

The fact that equilibria of simultaneous auctions might not be socially optimal was first observed
by Bikhchandani (1999), who studied the complete information1 setting. As he states:

“Simultaneous sealed bid auctions are likely to be inefficient under complete information
and hence, also under the more realistic assumption of incomplete information about
buyer reservation values.”

Our goal is to bound the extent of this inefficiency in the incomplete information setting. To
this end, we model incomplete information using the standard Bayesian framework. In this model,
the buyers’ valuations are assumed to be drawn independently from (not necessarily identical)
distributions. This product distribution is commonly known to all of the participants; we think
of this as representing the public’s aggregate beliefs about the buyers in the market. While the
distributions are common knowledge, each agent’s true valuation is private. This Bayesian model
generalizes the full-information model of Nash equilibrium, which implicitly supposes that the type
profile2 is known by all participants. Note that while the agents are aware of the type distribution,
the mechanism (which applies simultaneous item auctions) is prior-free and hence agnostic to this
information.

1In a complete (or full) information setting, it is assumed that the bidders’ valuations are commonly known to all
participants.

2We will use the terms “type” and “valuation” interchangeably.
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Our bounds for the incomplete information setting will, a fortiori, apply to equilibria in the
setting of complete information. Moreover, our analysis applies also to correlated equilibria and
coarse correlated equilibria. A known implication of bounded performance at coarse correlated
equilibria is that one can bound the extent of inefficiency in repeated plays of simultaneous sealed
bid auctions, under an assumption that the bidders apply strategies that exhibit vanishing regret
over time.

Pricing and Efficiency in Simultaneous Auctions. We consider separately the case in which
items are sold via first-price auctions (where the player who bids highest wins and pays his bid),
and the case of second-price auctions3 (in which the winning bidder pays the second-highest bid).
The differences between first and second-price item auctions have received significant attention in
the recent literature. For example, a pure Nash equilibrium of our mechanism with simultaneous
first-price auctions is equivalent to a Walrasian equilibrium (Bikhchandani, 1999; Hassidim et al.,
2011), and therefore must obtain the optimal social welfare (Mamer and Bikhchandani, 1997). On
the other hand, every pure Nash equilibrium for second-price auctions is equivalent to a Conditional
equilibrium, and hence obtains at least half of the optimal social welfare (Fu et al., 2012). While
these constant factor bounds are appealing, their power is marred by the fact that pure equilibria
do not exist in general.

Can we hope for such constant-factor bounds to hold for general Bayes-Nash equilibria? For
general valuations the answer is no. Consider, for example, the case of a buyer who has a very
large value for the set of all objects for sale, but no value for any strict subset. In this case, any
positive bid carries great exposure risk: the buyer might win some items but not others, leaving him
with negative utility. It therefore seems that complements do not synergize well with item bidding,
and indeed it has been shown by Hassidim et al. (2011) that the price of anarchy (with respect to
mixed equilibria) in a first-price auction can be as high as Ω(

√
m) when bidders’ valuations exhibit

complementarities. The same lower bound can be easily extended to the case of second-price
auctions4, as we show in Example 2.

Our main result is that the presence of complements is the only barrier to a constant price
of anarchy. We show that when buyer valuations are complement-free (a.k.a. subadditive), the
(Bayesian) price of anarchy of the simultaneous item auction mechanism is at most a constant, in
both the first- and second-price auctions. Moreover, these bounds apply to the coarse correlated
equilibria in the full information setting.

For first-price auctions, we show that any Bayes-Nash equilibrium yields at least half of the
optimal social welfare. This improves upon the previously best-known bound of O(logm) due to
Hassidim et al. (2011), where m is the number of items. Moreover, this bound applies also to coarse
correlated equilibria in the full information setting.

Result 1 (BPoA≤ 2 in simultaneous first-price auctions.). When buyers have subadditive
valuations, the Bayesian price of anarchy of the simultaneous first-price item auction mechanism
is at most 2.

3Second-price item auctions are also known as Vickrey auctions, and we will use these terms interchangeably.
4As explained in the sequel, to obtain meaningful results in second-price auctions one needs to impose no-

overbidding assumptions on the bidding strategies, defined formally in Section 2.3. The Ω(
√
m) lower bound extends

to the case of second-price auctions under the weak no-overbidding assumption. The alternative strong no-overbidding
assumption is meaningless in the case of complements, as it precludes item bidding altogether.
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For simultaneous Vickrey auctions, it is not possible to bound the worst-case performance at
equilibrium, even when there is only a single object for sale. This impossibility is due to arguably
unnatural equilibria in which certain players grossly overreport their values, prompting others to
bid nothing. To circumvent this issue one must impose an assumption that agents avoid such
“overbidding” strategies. In the strong no-overbidding assumption, used by Christodoulou et al.
(2008) and Bhawalkar and Roughgarden (2011), it is assumed that each agent i chooses bids so
that, for every set of objects S, the sum of the bids on S is at most vi(S). We show that under
this assumption, the Bayesian price of anarchy for simultaneous Vickrey auctions is at most 4. As
before, this bound applies also to coarse correlated equilibria in the full information model.

Result 2 (BPoA≤ 4 in simultaneous second-price auctions.). When buyers have subadditive
valuations, the Bayesian price of anarchy of the simultaneous Vickrey auction mechanism is at most
4, under the strong no-overbidding assumption.

The strong no-overbidding assumption is quite strong, as it must hold for every set of items. A
somewhat weaker assumption, referred to as weak no-overbidding, requires that the no overbidding
condition holds only in expectation over the distribution of sets won by a player at equilibrium. That
is, agents are said to be weakly no-overbidding if they apply strategies such that the expected value
of each agent’s winnings is at least the expected sum of his winning bids (Fu et al., 2012). Roughly
speaking, weak no-overbidding supposes that agents are generally averse to winning sets with bids
that are higher than their true values for those sets. However, unlike strong no-overbidding, it does
not preclude strategies by which an agent overbids on sets that he does not expect to win, e.g. in
order to more accurately express his willingness to pay for other sets.

Notably, the BNE outcomes under the two no-overbidding assumptions are incomparable; while
the weak assumption is more permissive, and thus enables a richer set of behaviors in equilibrium,
it also introduces new ways to deviate from the prescribed equilibrium. We show that the bound of
4 on the Bayesian PoA and Coarse Correlated PoA extend also to the case of weakly no-overbidding
agents.

Bhawalkar and Roughgarden (2011) showed that, under the strong no-overbidding assumption,
the Bayesian price of anarchy of the simultaneous Vickrey auction is strictly greater than 2, and
furthermore the price of anarchy is Ω(n1/4) when agent values are allowed to be correlated. We
show that similar results hold also under the weak no-overbidding assumption, proving bounds
strictly greater than 2 and Ω(n1/6), respectively.

Our bounds hold for subadditive bidders, whereas constant bounds on Bayesian price of anar-
chy were previously known only for the subclass of fractionally subadditive (i.e. XOS) valuations
(Christodoulou et al., 2008). Subadditive valuations are more expressive than XOS valuations, and
obtaining price of anarchy bounds for subadditive valuations is significantly more challenging. In
particular, for XOS valuations, a player who aims to win certain set S has a natural choice of bid:
the additive valuation that determines his value for set S. For subadditive valuations, there is no
such notion of a natural bid aimed at representing one’s value for a particular set, and hence even
determining how best to bid on a certain set of interest is a non-trivial task.

Related Works Combinatorial auctions is a canonical subject of study in algorithmic mechanism
design (see Nisan et al., 2007 and references therein for the large body of literature on this subject).
While most previous work focuses on the design of incentive compatible mechanisms, we follow the
more recent literature on the analysis of simple and practical (albeit not incentive compatible)
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PoA XOS Subadditive General valuations

Pure 1 1
1 (Bikhchandani, 1999;
Hassidim et al., 2011)

Bayesian
e

e−1 (Syrgkanis and
Tardos, 2013)

O(lnm) (Hassidim et al., 2011)
This work: 2

Ω(
√
m)

(Hassidim et al., 2011)

Table 1: A comparison of results for simultaneous first-price auctions.

PoA XOS Subadditive General valuations

Pure
2 (Christodoulou

et al., 2008)
2 (Bhawalkar and Roughgarden, 2011) 2 (Fu et al., 2012)

Bayesian
2 (Christodoulou

et al., 2008)
O(lnm) (Bhawalkar & Roughgarden’11)

This work: 2
This work5: Ω(

√
m)

Table 2: A comparison of results for simultaneous second-price auctions under no-overbidding
assumption on the buyers.

auctions. Following the rich literature on the price of anarchy (PoA) (see, e.g., Roughgarden and
Tardos, 2007, for references), Christodoulou et al. (2008) pioneered the study of the Bayesian
price of anarchy (BPoA) and applied it to item-bidding auctions. They bounded the BPoA by 2
in simultaneous second-price auctions with XOS valuations, which are equivalent to fractionally
subadditive functions (Feige, 2009). The same bound was extended to the more general class of
subadditive valuations by Bhawalkar and Roughgarden (2011), and later to general valuations by
Fu et al. (2012), albeit only with respect to pure equilibria (when they exist). The simultaneous
first-price auctions was studied by Hassidim et al. (2011), who showed a pure PoA of 1 for general
valuations6, and a Bayesian PoA bound of 4 for XOS (fractionally subadditive) valuations. The
latter bound for XOS valuations was later improved to e

e−1 by Syrgkanis and Tardos (2013).
For both first- and second-price simultaneous auctions, the BPoA for subadditive valuations was

not previously known to be better than O(logm). Previous techniques applied the known bounds
for XOS valuations, using the O(logm) separation between XOS and subadditive valuations (see
e.g. Bhawalkar and Roughgarden, 2011).

We summarize the results in the literature in Table 1 and Table 2.
Studies on PoA and BPoA have provided insights into other settings, e.g. auctions employing

greedy algorithms (Lucier and Borodin, 2010), Generalized Second Price Auctions (Paes Leme
and Tardos, 2010; Lucier and Paes Leme, 2011; Caragiannis et al., 2011), and also game-theoretic
settings that are not related to auctions, such as network formation games (Alon et al., 2010).

5The example is identical to Hassidim et al., 2011 with a special treatment of weak no-overbidding condition in
the second-price auction.

6Pure Nash equilibria rarely exist in this case though, as they are shown to be equivalent to Walrasian equilibria
of the corresponding two-sided market.
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The smoothness technique for Bayesian games, developed by Roughgarden (2012) and Syrgkanis
(2012), provides a method for extending bounds on pure PoA to Bayesian PoA. However, to the
best of our knowledge, our approach does not fall within this framework directly. Roughly speaking,
the smoothness framework requires that each player can find a good “default” strategy given his
type, which is independent of the opponents’ strategy selections. By comparison, the strategies we
consider in our analysis7 depend heavily on the distribution of strategies applied by all players at
equilibrium.

The initial conference publication of this work did not include bounds on coarse correlated
price of anarchy. Subsequent to that publication, and independently of this revised version of the
paper, Dütting et al. (2013) establish that the coarse correlated price of anarchy for simultaneous
second-price item auctions, under the strong no-overbidding assumption and for complement-free
valuations, is at most 4. Their approach is to define a generalized notion of smoothness, which they
call “relaxed smoothness,” and then to establish that a simultaneous second-price item auction for
complement-free bidders satisfies a relaxed smoothness condition.

Organization of the paper. We introduce the necessary background and notations in Section 2.
Our analysis then proceeds in two parts. In the first part, Section 3, we consider a single-player
game in which the player, a subadditive buyer, must determine how best to bid on a set of objects
against a distribution over price vectors. We show that, for every distribution under which the
expected sum of prices is not too large, the buyer has a bidding strategy that guarantees a high
expected utility (compared to the player’s value for the set of all objects).

In the second part of our analysis for the first-price (Section 4) and Vickrey (Section 5) auctions,
we show that every Bayes-Nash equilibrium must have high expected social welfare. We do this
by considering deviations in which an agent uses the bidding strategy from the single-player game
described in Section 3, applied to some subset of the objects. This subset of objects is chosen
randomly: agent i draws a new profile of types for his opponents from the type distribution, then
considers bidding for the set he would be allocated under this “virtual” type profile. At a BNE,
agent i cannot benefit from such a randomized deviation; we show this implies that the social
welfare at equilibrium is at least a constant times the optimal welfare.

2 Preliminaries

2.1 Auctions and Equilibria

Combinatorial Auctions. In a combinatorial auction, m items are sold to n bidders. Each
bidder has a private combinatorial valuation captured by a set function v : 2[m] → R+ over different
bundles S ⊆ [m]. Throughout the paper we assume the valuations are monotone, i.e. for every
subset S ⊆ T ⊆ [m] it holds that v(S) ≤ v(T ). In a Bayesian (partial-information) setting,
the bidders’ valuation profile v is drawn from a commonly known product distribution8 F =
F1 × · · · × Fn. The outcome of an auction consists of an allocation X = (X1, · · · , Xn) ∈ 2[m]×n,
where Xi is the bundle of items allocated to bidder i, and payments made by each bidder. The social

7We note that one can apply smoothness techniques to XOS valuations, but because of the O(logm) separation
between XOS and subadditive valuations (see e.g. Bhawalkar and Roughgarden, 2011), a direct application of this
approach gives only a logarithmic bound.

8Whenever an expectation is taken with respect to valuations, it will be assumed that they are drawn from these
corresponding distributions.
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welfare of an allocation is
∑

i∈[n] vi(Xi). For any given valuation profile v, we let (OPTv
1 , . . . ,OPTv

n)
denote the welfare-maximizing assignment for profile v.

Simultaneous Item-Bidding Auctions. In a simultaneous item-bidding auction, each bidder
simultaneously submits a vector of bids, one for each item. The outcome of the auction is then
decided item by item according to the bids placed on each item. In this paper we study two forms
of such auctions: simultaneous first price auctions and simultaneous second price auctions9. In
both auctions, each item is allocated to the bidder who has placed the highest bid on it (breaking
ties arbitrarily but consistently). In a (simultaneous) first price auction, the winner of each item
pays his bid on that item, and in a (simultaneous) second price auction, the winner of each item
pays the second highest bid on that item. We now give a more formal description of this process.

We generally write bi(j) to denote the bid of player i on item j, and~bi for the vector of bids placed
by bidder i. Alternatively, we may think of agent i’s bid as an additive function bi(S) =

∑
j∈S bi(j)

that corresponds10 to the bid-vector ~bi. Given a sequence of bid profiles b = (b1, . . . , bn), we write
Wi(b) for the set of items won by bidder i, and ~pi ∈ Rm

+ the vector of payments made by bidder i
on the items. In this notation, the first- and second-price auctions can be summarized as follows:

First-price Vickrey
won set: Wi(b) = {j ∈ [m] | bi(j) > bk(j), ∀k 6= i}

payment: pi(j) =

{
bi(j), j ∈Wi(b)
0, j /∈Wi(b)

pi(j) =

{
maxk 6=i bk(j), j ∈Wi(b)
0, j /∈Wi(b)

We assume bidders have quasi-linear utilities, i.e. the utility of bidder i for a given bid profile
b is given by ui(b) = vi(Wi(b))− pi(Wi(b)).

A Single Bidder’s Perspective on Bidding In both first and second price auctions, the set of
items won by a bidder i bidding bi is determined solely by a coordinate-wise comparison between bi
and the largest bid placed by the other bidders. Let ϕi(b−i) be the vector whose j-th component
is maxk 6=i bk(j). It is often convenient to write W (bi,b−i) as W (bi, ~p) where ~p = ϕi(b−i). We think
of ~p as the vector of prices perceived by bidder i: in the second price auction, the bidder pays the
price on an item if his bid exceeds it; and in the first price auction the bidder pays his own bid
on such an item, and ~p is the minimum such winning bid. It is in this light that we often write
ϕi(b−i) as prices ~p when this causes no confusion. We will also shorten the notation v(W (b, ~p)) to
v(b, ~p), meaning the value obtained when bidding b against perceived prices ~p.

Strategies and Equilibria. Buyers select their bids strategically in order to maximize utility.
The bidding behavior of a buyer given its valuation is described by a strategy. A strategy si maps
each valuation vi to a distribution over bid vectors; we interpret si(vi) as the (possibly randomized)
set of bids placed by bidder i when his type is vi.

9The word “simultaneous” is often omitted, as we study only simultaneous (in contrast to sequential) auctions.
10There is an easy equivalence between an additive function a(S) :=

∑
j∈S

a({j}) and its concise vector description

~a = (a({1}), . . . , a({m})). We will use functional and vector representations interchangeably as the situation demands.
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Definition 1 (Bayesian Nash Equilibria). A profile of strategies s = (s1(v1), . . . , sn(vn)) is in
Bayes-Nash equilibrium (BNE) for distribution F if, for every buyer i, type vi, and bidding strategy
s̃i,

Ev−i

 E
b−i∼s(v−i),
bi∼si(vi)

[
ui(bi,b−i)

] ≥ Ev−i

 E
b−i∼s(v−i),

b̃i∼s̃i

[
ui(̃bi,b−i)

] .
Given Fubini’s Theorem, we can shorten the condition as follows (such shorthand forms are

used throughout the paper):

Ev−i,b∼s(v)
[
ui(b)

]
≥ E

v−i,b∼s(v),̃bi∼s̃i

[
ui(̃bi,b−i)

]
. (1)

Definition 2 (Bayesian Price of Anarchy). Given an auction type (either first- or second-price),
the Bayesian price of anarchy (BPoA) is the worst-case ratio between the optimal expected welfare
and the expected welfare at a BNE and is given by

max
(F , s):

s a BNE for F

Ev[
∑

i vi(OPTv
i )]

Ev,b∼s(v)[
∑

i vi(Wi(b))]
.

For second price auctions we will consider BPoA under natural restrictions on the strategies
used by the bidders. In such cases, the maximum in Definition 2 is taken with respect to BNE
under that restricted class of strategies. We note that a BNE is guaranteed to exist as long as the
space of valuations and potential bids is discretized, say with all values expressed as increments of
some ε > 0.

Our results will apply also to full information settings, where we can allow bidding strategies
to be correlated between bidders. To this end, we quantify the inefficiency that can arise in coarse
correlated equilibria (a superset of correlated equilibria), in settings with complete information, as
defined below.

Definition 3 (Coarse Correlated Nash Equilibria). A distribution B over bid profiles b, which need
not be a product distribution, is a Coarse Correlated Nash equilibrium (CCNE) for type profile v
if, for every buyer i and bidding strategy b̃i,

Eb∼B
[
ui(bi,b−i)

]
≥ Eb∼B

[
ui(̃bi,b−i)

]
.

Definition 4 (Coarse Correlated Price of Anarchy). Given an auction type (either first- or second-
price), the Coarse Correlated price of anarchy (CCPoA) is the worst-case ratio between the optimal
welfare and the expected welfare at a CCNE and is given by

max
(v, B):

B a CCNE for v

∑
i vi(OPTv

i )

Eb∼B[
∑

i vi(Wi(b))]
.

Existence of Equilibria Formally, the simultaneous auction games we consider have continuous
type spaces (i.e. valuations) and continuous (pure) strategy spaces (i.e. potential bids). In general,
equilibria may not exist in such infinite games, even when the strategy space is compact. As a toy
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example, consider a game in which each bidder declares a value from [0, 1], and whoever declares
the largest value strictly less than 1 wins; such a game does not admit any mixed equilibria. The
existence of equilibria in infinite games is an involved topic, a full discussion of which falls outside
the scope of this paper. We hope only to give a brief discussion of relevant issues and results.

Consider first a variant of our auction game in which agent types and bids are discretized and
bounded. That is, suppose that all values lie in [0, 1], and moreover that there is some ε > 0 such
that for each agent i and every set of items S, vi(S) can be expressed as ε× ki(S) for some integer
ki(S) ≥ 0. Furthermore, each agent is restricted to placing bids from [0, 1], each of which must be
a multiple of ε. In this restricted game, a Bayes-Nash equilibrium always exists. To see this, note
that the set of (pure) strategies is finite: it is the set of all functions mapping agent types (a finite
set) to bid vectors (also finite). We can interpret the (Bayesian) game of incomplete information
as the following normal-form game: each agent selects a bidding function ex ante, and the payoffs
correspond to the expected payoffs in the Bayesian game under the commonly known distribution
of types. Since the strategy space is finite, Nash’s result implies the existence of a mixed Nash
equilibrium of this normal-form game, which corresponds precisely to a Bayes-Nash equilibrium of
the original game.

Let us turn now to the more general setting of continuous agent valuations and bids, say
constrained to lie in [0, 1]. We can, of course, approximate the continuous setting via discretizations
to an ε-grid with arbitrarily small choice of ε. Given the above discussion, we know that an
equilibrium will exist under any such discretization. Our position in this paper will be to suppose the
existence of such a discretization that effectively captures the true preferences of the participants.

To the best of our understanding, for the particular case of simultaneous item auctions for agents
with subadditive valuations, it is not known whether a BNE always exists when values and bids
are not discretized and are constrained only to lie in [0, 1]. We leave this as an open question. We
do note, however, that a result due to Simon and Zame (1990) implies that, for any profile of agent
types, there exists a tie-breaking rule (i.e. manner of distributing items for which multiple players
declare the same bid) such that a mixed Nash equilibrium exists. Importantly, the tie-breaking rule
used may depend on the types of the agents. It is tempting to guess that such endogenous choice
of tie-breaking rules can be applied to guarantee existence of BNE in our setting, but we leave this
as an avenue for future work.

2.2 Subadditive Valuations

We focus on valuations that are complement-free in the following general sense:

Definition 5. A set function v : 2[m] → R+ is subadditive if, for any subsets S1, S2 ⊂ [m],

v(S1) + v(S2) ≥ v(S1 ∪ S2).

The class of subadditive functions strictly includes a hierarchy of more restrictive complement-
free functions such as submodular and gross substitute functions (see Lehmann et al., 2006 for
definitions and discussions). Among these, the XOS functions, as defined below, have a particular
kinship with subadditive functions. The term XOS literally means XOR (taking the maximum) of
OR’s (taking sums), and this class of valuations is known to be equivalent to the class of fractionally
subadditive functions (Feige, 2009).
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Definition 6. A function v : 2[m] → R+ is said to be XOS if there exists a collection of additive
functions a1(·), . . . , ak(·) (that is, ai(S) :=

∑
j∈S

ai({j}) for every set S ⊂ [m]), such that for each

S ⊆ [m], v(S) := max1≤i≤k ai(S).

One of the characterizations of XOS functions uses the following definition.

Definition 7. A function f(·) is said to be dominated by a set function g(·) if for any subset
S ⊆ [m], f(S) ≤ g(S). We say that a vector ~a = (a1, . . . , am) is dominated by a set function v(·),
if as an additive function a(·) is dominated by v(·).

It is not too difficult to observe that v(·) is XOS if and only if for every set T ⊂ [m] there is an
additive function a(·) dominated by v(·) such that a(T ) = v(T ).

For a general subadditive function v(·), it can be the case that any additive function a(·)
dominated by v(·) has Ω(log(m)) gap from v([m]), i.e. Ω(log(m))a([m]) ≤ v([m]), (See Bhawalkar
and Roughgarden, 2011 for such an example) and a logarithmic factor is also an upper bound.
Previous work that attempted to bound the BPoA for subadditive valuations (Bhawalkar and
Roughgarden, 2011; Hassidim et al., 2011) provided constant bounds for XOS valuations, then
used the logarithmic factor separation between XOS and subadditive valuations to establish a
logarithmic upper bound on the BPoA for subadditive valuations. While it seems plausible to use
the close relation between XOS and subadditive valuations, any analysis that follows this trajectory
would encounter this inevitable logarithmic gap. Our challenge, therefore, is in developing a new
proof technique for subadditive valuations, which does not go through XOS valuations. This is the
approach taken in this work.

2.3 Overbidding

It is well known that in second price auctions, even with only a single item, the price of anarchy
can be infinite when bidders are not restricted in their bids11. To exclude such pathological cases,
previous literature (e.g. Christodoulou et al., 2008; Bhawalkar and Roughgarden, 2011) has made
the following no-overbidding assumption standard12:

Definition 8. A bid b(·) by a bidder with valuation v(·) is said to be strongly no-overbidding if
b(·) is dominated by v(·). A bidder is strongly no-overbidding if, given his valuation, he only makes
bids that are strongly no-overbidding.

In other words, a bidder that is strongly no-overbidding is guaranteed to derive non-negative
utility, no matter how the other bidders behave. Thus strong no-overbidding is a strong risk-
aversion assumption on the buyers. One may also consider a less extreme notion of risk-aversion:
in the following we generalize a weaker assumption of no-overbidding introduced by Fu et al. (2012).

Definition 9. Given a price distribution D defined by equilibrium bids of all bidders besides i, a
bidder i is weakly no-overbidding if each bid vector b in the support of his strategy satisfies that
Ep∼D[v(W (b, p))] ≥ Ep∼D[b(W (b, p))], where W (b, p) denotes the subset of items he wins when he
bids b at price p, i.e., W (b, p) = {j ∈ [m] | b(j) ≥ p(j)}.

11A canonical example is two bidders who value the item at 0 and a large number h, respectively, but the first
bidder bids h + 1 and the second bidder bids 0.

12We note that such no-overbidding assumptions were also made in other contexts (e.g. Lucier and Borodin, 2010;
Paes Leme and Tardos, 2010).
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In our analysis of the BPoA of second-price auctions we have adopted either the strong version
or the weak version of the no-overbidding assumption; that is, the assumption that all bidders are
(strongly/weakly) no-overbidding. A few conceptual remarks are in order.

No Overbidding: a Discussion. We can think of no-overbidding assumptions as representing
a form of risk aversion. The strong no-overbidding assumption guarantees to the bidder a non-
negative utility, independent of the behavior of the other players; i.e., even if the other players
behave in an arbitrary way. The weak no-overbidding assumption, in contrast, guarantees to the
bidder a non-negative utility only if the other bidders behave “as expected”. However, when the
other bidders behave as expected, the bidder is guaranteed a non-negative utility even if the auction
changes, ex-post, from a second-price auction to a first-price auction.

Let us give an example to illustrate the difference between the two assumptions. Consider an
instance of a simultaneous second-price auction with two bidders and two items, say {a, b}. The
first bidder is unit-demand; with probability 1 his valuation is such that he has value 1 for any non-
empty subset of the items. The second bidder’s valuation is additive, and distributed as follows:
with probability 1/2 she values a for 0.9 and b for 1.1, and with the remaining probability 1/2 she
values a for 1.1 and b for 0.9. In this instance, since the second bidder’s valuation is additive it is a
dominant strategy for her to bid her true value on each item. The best response for the first bidder
is then to bid between 0.9 and 1 on each item: this guarantees that he wins one of the items and
pays 0.9. This profile of strategies then forms a BNE for this instance. This bidding strategy of
player 1 does not satisfy the strong no-overbidding assumption: it requires that he indicate a value
of at least 1.8 for the set {a, b}, which is larger than his true value 1. However, it does satisfy the
weak no-overbidding assumption given the behavior of bidder 2, since bidder 1 expects to win only
one item (of value 1) with a bid of 0.9.

The above example illustrates a situation in which the best response of a player is permitted
by weak no-overbidding but excluded by strong no-overbidding. There also exist cases in which
a best response is also excluded by the weak no-overbidding assumption. Example 1 is one such
case: the players can improve their utilities, but only by applying strategies that violate weak
no-overbidding. A direction for future research would be to determine whether there is a weaker
restriction on strategies that never excludes best-responses, but yet still guarantees a constant price
of anarchy bound.

The use of no-overbidding assumptions in Vickrey auctions and GSP auctions (Paes Leme and
Tardos, 2010; Lucier and Paes Leme, 2011) was justified by the fact that overbidding is weakly
dominated: any overbidding strategy can be converted to a no-overbidding strategy that performs
at least as well, regardless of the behavior of the other agents. For the case of simultaneous item
auctions, our no-overbidding assumption cannot be relaxed to the assumption that bidders avoid
such dominated strategies. In particular, there exists an instance of a second-price auction with
a Bayesian equilibrium in which all bidders play undominated strategies, and the Bayesian price
of anarchy is Ω(n). For example, consider an instance with n unit-demand bidders and n items,
where every bidder i = 1, . . . , n− 1 values each of item i and item n at 1− ε (for some ε > 0), and
bidder n values all items 1, . . . , n−1 at 1 (and has no value for item n). One can easily verify that,
for bidder n, to bid 1 on all the first n − 1 items is an undominated strategy (while it obviously
breaks the strong no overbidding requirement). Consider the strategy profile in which bidder n
bids according to this strategy, and each of bidders i = 1, . . . , n − 1 bids 0 on item i and 1 − ε on
item n. This is a Bayesian equilibrium in undominated strategies in a second-price auction, which
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gives social welfare 2− ε, compared to the optimal social welfare, which is roughly n.
Finally, let us comment on the interpretation of no-overbidding as a strategy space restriction,

rather than an equilibrium refinement. We have defined no-overbidding as a restriction on the
strategy space of each bidder. A strongly no-overbidding agent with valuation v has, as his space
of possible strategies, only those bid profiles that are dominated by v. Likewise, a weakly no-
overbidding agent who is responding to a profile of his opponents’ bidding strategies is restricted to
those bidding profiles that are weakly no-overbidding given the behavior of the other participants.
There is an alternative viewpoint, which is to treat no-overbidding as an equilibrium refinement. For
instance, one might say that an equilibrium (of the unrestricted game) satisfies the no-overbidding
property if all agents apply (strongly/weakly) no-overbidding strategies at that equilibrium. The
difference between these perspectives is that the former definition (which we adopt) can admit
additional equilibria to the game, since it supposes that the players will not consider deviations
that involve overbidding. On the other hand, the latter definition requires that, at equilibrium, no
player has an improving deviation including strategies that involve overbidding.

Our choice is motivated by the fact that price of anarchy bounds (like those proved in this
work) are only stronger when one grows the set of equilibria. Since we show that all equilibria of
the simultaneous item auction are approximately efficient, the fact that our definition includes a
larger set of equilibria serves to strengthen the result. In other words, our price of anarchy bounds
would also hold if one took the alternative perspective, and considered only those equilibria of the
original game that satisfy no-overbidding. Moreover, our definition has the advantage that a no-
overbidding equilibrium is guaranteed to exist, since it corresponds to an unrestricted equilibrium
in a game with modified strategy space. That said, we also use the strategy restriction notion of
no-overbidding when proving our lower bound for simultaneous second-price auctions (presented at
the end of Section 5). It would be stronger to establish this lower bound using an equilibrium that
is also an equilibrium of the game without a no-overbidding restriction. We leave the development
of such a stronger lower bound as an open problem.

3 Bidding Strategies Under Uncertain Prices

As discussed in Section 2, a bidder in a simultaneous auction faces the problem of maximizing his
utility in the presence of uncertain prices (which are the largest bids placed by other bidders). While
this maximization problem is intricate, we will show that there is a simple bidding strategy that
performs relatively well. By this we mean that its resulting utility is comparable with a constant
fraction of the bidder’s value of the whole bundle, minus the expected total prices. In other words,
given a price distribution D, it is desired to have a bidding strategy b such that

Ep∼D
[
v(b, p)

]
− b([m]) ≥ αv([m])−Ep∼D

[
p([m])

]
, (2)

for some constant α ≤ 1. Such bidding strategies are key ingredients of the BPoA proofs in later
sections, and may be of interest on their own.

For fixed prices, achieving (2) is trivial, even for α = 1; indeed, given a price vector ~p, by bidding
according to b = p, a bidder obtains v(b, p)− b([m]) = v([m])−p([m]). If prices were instead drawn
from a product distribution (implying independence across items) then achieving (2) is likewise
simple: for each item j, one should bid bj = E[pj ], its expected price. The case in which prices are
drawn from an arbitrary distribution is more intricate, and is the subject of the remainder of this
section.

12



Lemma 3 (Bidding against price distributions). For any distribution D of prices p and any
subadditive valuation v(·) there exists a bid b0 such that

Ep∼D
[
v(b0, p)

]
− b0([m]) ≥ 1

2
v([m])−Ep∼D

[
p([m])

]
. (3)

Proof. We show a random bidding strategy that guarantees the desired inequality in expectation,
and infer the existence of a bid, drawn from the suggested distribution, that achieves the same
inequality. Consider a bid that is drawn according to the exact same distribution as the prices. It
holds that

Eb∼D

[
Ep∼D

[
v(b, p)

]]
= Ep∼D

[
Eb∼D

[
v(b, p)

]]
=

1

2
Eb∼D

[
Ep∼D

[
v(b, p) + v(p, b)

]]
(4)

≥ 1

2
Eb∼D

[
Ep∼D

[
v([m])

]]
=

1

2
v([m]),

where the inequality follows from subadditivity (which guarantees that v(b, p) + v(p, b) ≥ v([m])
for every p and b). We actually note this inequality has a small caveat regarding the breaking of
ties. We have not precisely specified the interpretation of v(b, p) when b and p exactly coincide on
some of the items. We will address this issue as follows. We will consider a slightly modified bid
bε. Namely, the bidder will draw b ∼ D, but then perform a small increment of ε for the bid upon
each item (that is, the next-largest amount in the discretization of bids). Now we can ensure that
bidder i wins each tie and, therefore, the last inequality (4) holds. From (4), it follows that

Eb∼D

[
Ep∼D

[
v(bε, p)

]
− bε([m])

]
≥ 1

2
v([m])−Eb∼D

[
bε([m])

]
≥ 1

2
v([m])−Ep∼D

[
p([m])

]
−mε.

For the sake of clarity we will omit ε in this and future inequalities, as one can use an arbitrarily
fine discretization of bids.

We conclude that since a bid drawn from D satisfies (3) in expectation, there must exist a bid
b0 satisfying (3), as required.

3.1 No-Overbidding Strategies Under Uncertain Prices

As noted in Section 2.3, in order to obtain any meaningful bound on BPoA for second price auc-
tions, one needs to assume that bidders are not overbidding. Unfortunately, Lemma 3 is not
concerned with such requirements, and hence the bid suggested by Lemma 3 may involve overbid-
ding. This problem is addressed in Lemma 5, where it is shown that a strongly no-overbidding
strategy analogous to that in Lemma 3 always exists.

Notably, when the no-overbidding requirement is imposed, the existence of a bid satisfying (2)
is already nontrivial when the prices are fixed. The following lemma, rephrased from Bhawalkar
and Roughgarden (2011), establishes its existence:

Lemma 4 (Lemma 3.3 in Bhawalkar and Roughgarden, 2011). For a given price vector p
and any subadditive valuation v(·) there exists a bid b dominated by v(·) such that

v(b, p)− b([m]) ≥ v([m])− p([m]).

We must now analyze the case when prices are drawn randomly.
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Lemma 5 (No Overbidding Against Price Distributions). For any distribution D of prices p
and any subadditive valuation v(·) there exists a bid b0 dominated by v(·) such that

Ep∼D
[
v(b0, p)

]
− b0([m]) ≥ 1

2
v([m])−Ep∼D

[
p([m])

]
. (5)

Proof. Let q be any price vector in the support of the distribution D. Let T ⊆ [m] be a maximal
set such that v(T ) ≤ q(T ). We consider a truncated price vector q̃, which is 0 on the coordinates
corresponding to T and coincides with q on the coordinates corresponding to [m] \ T .

We first observe that q̃ is dominated by v(·). Indeed, for any set R ⊂ [m] \ T it holds that
v(R) > q(R), since otherwise

v(R ∪ T ) ≤ v(R) + v(T ) ≤ q(R) + q(T ) = q(R ∪ T ),

in contradiction to the fact that T is a maximal set satisfying v(T ) ≤ q(T ).
We next establish that for any bid b, it holds that

v(b, q) + q([m]) ≥ v(b, q̃) + q̃([m]). (6)

Indeed, we have W (b, q̃) ⊆W (b, q)∪ T . Therefore, v(b, q̃) ≤ v(b, q) + v(T ) due to subadditivity
of v(·). Now (6) follows by observing that q([m])− q̃([m]) = q(T ) ≥ v(T ).

We next define the distribution D̃ :=
{
q̃ | q ∼ D

}
which consist of truncated prices drawn from

D. Equation (6) now extends for any bid b to

Ep∼D
[
v(b, p) + p([m])

]
≥ E

p̃∼D̃
[
v(b, p̃) + p̃([m])

]
. (7)

Recall that each q̃ ∼ D̃ is dominated by v(·), therefore, bidding any b drawn from D̃ satisfies
the strongly no overbidding requirement. Furthermore, by applying (7) to each b ∼ D̃ we get

E
b∼D̃

[
Ep∼D

[
v(b, p) + p([m])

]]
≥ E

b∼D̃

[
E

p̃∼D̃
[
v(b, p̃) + p̃([m])

]]
= E

b∼D̃

[
E

p̃∼D̃
[
v(b, p̃)

]]
+ E

b∼D̃
[
b([m])

]
≥ 1

2
v([m]) + E

b∼D̃
[
b([m])

]
,

where the last inequality follows in a manner similar to the proof of Lemma 3. The assertion of
the lemma follows.

4 Price of Anarchy for First Price Auctions

In this section we apply the bidding strategy from Lemma 3 to bound the Bayesian price of anarchy
of simultaneous first-price auctions.

Theorem 6. In a simultaneous first-price auction with subadditive bidders, the Bayesian price of
anarchy is at most 2.

14



Proof. Fix type distributions F and let s be a BNE for F . Choose some agent i and an arbitrary sub-
additive valuation vi. Fix an arbitrary v∗−i, and let v∗ = (vi,v

∗
−i). Recall that (OPTv∗

1 , . . . ,OPTv∗
n )

is the welfare-optimal allocation for v∗.
In the following we describe a certain bidding strategy bi

′ = bi
′(v∗−i) of bidder i with a given

valuation vi parameterized by a fixed valuation profile v∗−i against the price distribution that bidder
i faces when all other bidders play b−i ∼ s(v) at an equilibrium. Recall that each bid profile b−i
defines for bidder i a price vector ϕi(b−i). Let ~p be equal to ϕi(b−i) on OPTv∗

i and 0 elsewhere.
Let D be the distribution over these price vectors ~p = ~p(b−i), where b ∼ s(v). That is, D is
precisely the distribution over the maximum bids on the items in OPTv∗

i , excluding the bid of
player i. By Lemma 3 (and replacing [m] there by OPTv∗

i ), there exists a bid vector bi
′ over the

objects in OPTv∗
i such that, thinking now of p as an additive function,

Ep∼D

[
vi(bi

′, p)
]
− bi′(OPTv∗

i ) ≥ 1

2
vi(OPTv∗

i )−Ep∼D

[
p(OPTv∗

i )
]
. (8)

Since s forms a BNE, we have that

E
v−i,

b∼s(v)

[
ui(b)

]
≥ E

v−i,
b∼s(v)

[
ui(bi

′,b−i)
]

= E
v−i,

b∼s(v)

[
vi(bi

′, ϕi(b−i))
]
− E

v−i,
b∼s(v)

[
bi
′(Wi(bi

′,b−i))
]

≥ Ep∼D

[
vi(bi

′, p)
]
− bi′(OPTv∗

i ),

where the last inequality follows from the definition of D and the fact that Wi(bi
′,b−i) ⊆ OPTv∗

i

for all b−i. Applying (8) and the definition of p ∼ D, we conclude that

E
v−i,

b∼s(v)

[
ui(b)

]
≥ 1

2
vi(OPTv∗

i )− E
v−i,

b−i∼s−i(v−i)

 ∑
j∈OPTv∗

i

max
k 6=i

bk(j)

 . (9)

Taking the sum over all i and expectations over all vi ∼ Fi and v∗−i ∼ F−i, we conclude that

∑
i

E
v,v∗−i,

b∼s(v)

[
ui(b)

]
≥ 1

2

∑
i

E
vi,v∗−i

[
vi(OPTv∗

i )
]
−
∑
i

E
v,v∗−i,

b−i∼s−i(v−i)

 ∑
j∈OPTv∗

i

max
k 6=i

bk(j)

 . (10)

Let us consider each of the three terms of (10) in turn. The LHS is equal to Ev,b∼s(v)[
∑

i ui(b)], as

v∗−i does not appear inside the expectation. The first term on the RHS is equal to 1
2 Ev[

∑
i vi(OPTv

i )],
by relabeling v∗−i by v−i. For the final term on the RHS of (10), we note that

∑
i

E
v,v∗−i,

b−i∼s−i(v−i)

 ∑
j∈OPTv∗

i

max
k 6=i

bk(j)

 ≤∑
i

E
v,v∗−i,v̂i,

b∼s(v̂i,v−i)

 ∑
j∈OPTv∗

i

max
k

bk(j)


= E

v,b∼s(v)

∑
j

max
k

bk(j)

 ,
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where the first inequality is due to taking a maximum over a larger set, and the last equality follows
since OPTv∗

i form a partition of [m] (and by relabeling). We note a subtlety: in the first line we
select bid vector b with respect to (v̂i,v−i), rather than (vi,v−i), so that b is independent of the
partition (OPTv∗

1 , . . . ,OPTv∗
n ). Applying these simplifications to the terms of (10), we conclude

that

Ev,b∼s(v)

∑
i

ui(b)

 ≥ 1

2
Ev

∑
i

vi(OPTv
i )

−Ev,b∼s(v)

∑
j

max
k

bk(j)

 . (11)

Since we are in a first-price auction, we have that Ev,b∼s(v)[
∑

i ui(b)] = Ev,b∼s(v)[
∑

i vi(Wi(b))]−
Ev,b∼s(v)[

∑
j maxk bk(j)]. Equation (11) therefore implies

Ev,b∼s(v)

∑
i

vi(Wi(b))

 ≥ 1

2
Ev

∑
i

vi(OPTv
i )


which yields the desired result.

Remark: In Section 6, we show that the upper bound does not carry over to the case where the
bidders’ valuations are correlated. In particular, a polynomial lower bound of Ω(n1/6) is given on
the Bayesian price of anarchy for this case. The construction is based heavily upon a lower bound
due to Bhawalkar and Roughgarden (2011) for second-price auctions.

4.1 Coarse Correlated Equilibria

We now show that Theorem 6 can be extended to include similar bounds on the coarse correlated
price of anarchy under complete information. The proof, which we present for completeness, is
nearly identical to that of Theorem 6.

Theorem 7. In a simultaneous first-price auction with subadditive bidders, the Coarse Correlated
price of anarchy is at most 2.

Proof. Fix type profile v and coarse correlated equilibrium B for v. Choose agent i, and let random
variable ~p be equal to ϕi(b−i) on OPTv

i and 0 elsewhere, where b−i is drawn from B. Let D be the
distribution over price vectors ~p = ~p(b−i), where b ∼ B. That is, D is precisely the distribution
over the maximum bids on the items in OPTv

i , excluding the bid of player i. By Lemma 3, there
exists a bid vector bi

′ over the objects in OPTv
i such that, thinking now of p as an additive function,

Ep∼D

[
vi(bi

′, p)
]
− bi′(OPTv

i ) ≥ 1

2
vi(OPTv

i )−Ep∼D
[
p(OPTv

i )
]
. (12)

Since B is a coarse correlated equilibrium, we have that

E
b∼B

[
ui(b)

]
≥ E

b∼B

[
ui(bi

′,b−i)
]

= E
b∼B

[
vi(bi

′, ϕi(b−i))
]
− E

b∼B

[
bi
′(Wi(bi

′,b−i))
]

≥ Ep∼D

[
vi(bi

′, p)
]
− bi′(OPTv

i ),
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where the last inequality follows from the definition of D and the fact that Wi(bi
′,b−i) ⊆ OPTv

i

for all b−i. Applying (12) and the definition of p ∼ D, we conclude that

E
b∼B

[
ui(b)

]
≥ 1

2
vi(OPTv

i )− E
(bi,b−i)∼B

 ∑
j∈OPTv

i

max
k 6=i

bk(j)

 . (13)

Taking the sum over all i, we conclude that

∑
i

E
b∼B

[
ui(b)

]
≥ 1

2

∑
i

vi(OPTv
i )−

∑
i

E
(bi,b−i)∼B

 ∑
j∈OPTv

i

max
k 6=i

bk(j)


≥ 1

2

∑
i

vi(OPTv
i )−

∑
i

E
b∼B

 ∑
j∈OPTv

i

max
k

bk(j)

 , (14)

where the last inequality is simply due to the fact that the maximal bid on item j in the bundle
OPTv

i may only increase, when we include the bid bi of bidder i in the competition for item j.
We note that (14) follows from (12) in the same way that (11) was derived in the proof of

Theorem 6. The only change is that, since we are in the complete information setting, we need
not take expectations over type profiles, resulting in a simpler derivation than that of Theorem 6.
Instead, expectations over bid profiles are taken with respect to distribution B.

Since we are in a first-price auction, we have that Eb∼B[
∑

i ui(b)] = Eb∼B[
∑

i vi(Wi(b))] −
Eb∼B[

∑
j maxk bk(j)]. Equation (14) therefore implies

Eb∼B

∑
i

vi(Wi(b))

 ≥ 1

2

∑
i

vi(OPTv
i )

which yields the desired result.

5 Price of Anarchy for Second Price Auctions

We now turn to the case of simultaneous second-price auctions. We show that the Bayesian price
of anarchy of such an auction is always at most 4 for subadditive bidders, assuming that bidders
select strategies that satisfy either the strong or weak no-overbidding assumption.

Theorem 8. In simultaneous second price auctions where bidders have subadditive valuations in-
dependently drawn and each of them is strongly or weakly no-overbidding, the Bayesian price of
anarchy is at most 4. Also, the coarse correlated price of anarchy is at most 4.

Proof. We present the proof for the Bayesian price of anarchy; the argument for coarse correlated
price of anarchy follows in precisely the same way, as in the relationship between the proofs of
Theorem 6 and Theorem 7.

Fix type distributions F and let s be a BNE for F . We can then derive inequality (11) in
precisely the same way as in the proof of Theorem 6 (using now Lemma 5 instead of Lemma 3);
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we then have that

Ev,b∼s(v)

∑
i

ui(b)

 ≥ 1

2
Ev

∑
i

vi(OPTv
i )

−Ev,b∼s(v)

∑
j

max
k

bk(j)

 . (15)

Note that Ev,b∼s(v)[
∑

i vi(Wi(b))] ≥ Ev,b∼s(v)[
∑

i ui(b)]. Also, since each agent i is assumed to be
strongly or weakly no overbidding,

Ev,b∼s(v)

∑
j

max
k

bk(j)

 = Ev,b∼s(v)

∑
i

∑
j∈Wi(b)

bi(j)

 ≤ Ev,b∼s(v)

∑
i

vi(Wi(b))

 .
Equation (15) therefore implies

Ev,b∼s(v)

∑
i

vi(Wi(b))

 ≥ 1

2
Ev

∑
i

vi(OPTv
i )

−Ev,b∼s(v)

∑
i

vi(Wi(b))


as required.

Bhawalkar and Roughgarden showed that the Bayesian price of anarchy of second price auctions
can be strictly worse than the pure price of anarchy when bidders are strongly no overbidding. In
the following we give an example showing that such a gap exists also when bidders are weakly no
overbidding. We note that this gap is not implied by the example given by Bhawalkar and Rough-
garden since the strategy profile in their example is not a BNE under the weaker no overbidding
notion.

Example 1 (Bayesian price of anarchy can be strictly larger than 2 when bidders are
weakly no overbidding and have subadditive valuations). Consider an instance with 2
bidders and 6 items, where the set of items is divided into two sets, of 3 items each, denoted S1 and
S2. Throughout, we shall present the example with parameters a and b for ease of presentation.
The lower bound is obtained by substituting a = 0.06 and b = 0.85. In what follows, we describe the
valuation function of bidder 1; bidder 2’s valuation is symmetric to bidder 1’s with switched roles
of the sets S1 and S2. Bidder 1’s valuation over the items in S1 is additive with respective values
(over the 3 items) of (a, a, b), (b, a, a) or (a, b, a), each with probability 1/3. Bidder 1’s valuation
over the items in S2 is 2 if she gets all three items, and 1 for any non-empty strict subset of S2.
Bidder 1’s valuation for an arbitrary subset T is the maximum of her value for T ∩S1 and her value
for T ∩ S2. One can verify that this is indeed a subadditive valuation function.

We claim that the profile in which each bidder i bids her true (additive) valuation on Si and 0
on all other items is a Bayesian equilibrium under weak no-overbidding for the specified parameter
values. Under this bidding profile, each bidder derives a utility of 2a + b, amounting to a social
welfare of 2(2a+b) = 1.94. In contrast, if bidder 1 is allocated S2 and bidder 2 is allocated S1, then
each bidder derives a utility of 2, amounting to a social welfare of 4. Consequently, the Bayesian
price of anarchy is 4/1.94 > 2.061.

To establish this claim, we need to show that every beneficial deviation breaks the weak no-
overbidding assumption. Since weak no-overbidding is required for every bid in the support of a
strategy, it is sufficient to consider only pure deviations. By symmetry, it suffices to consider only
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deviations by bidder 1. Finally, it suffices to consider only deviations in which bidder 1 bids either
0, a, or b on each item in S2 and 0 on all items in S1; this is because bidder 1 still obtains S1 at no
cost.

The following table includes all the possible bids (in the rows), and their respective expected
values, expected payments and expected bids (in the columns). For clarity of presentation, we
present the expressions in parametric forms, and write the corresponding values for a = 0.06 and
b = 0.85 in brackets.

Deviation Ep∼D[v(W (b, p))] Ep∼D[p(W (b, p))] Ep∼D[b(W (b, p))]

(a, a, a) 1 2a[0.12] 2a [0.12]

(a, a, b) 1
3 · 2 + 2

3 · 1 = 4
3

1
3(2a+ b) + 2

3(2a)
= 2a+ 1

3b [0.4033..]

1
3(2a+ b) + 2

3(a+ b)
= 4

3a+ b [0.93]

(a, b, b) 2
3 · 2 + 1

3 · 1 = 5
3

2
3(2a+ b) + 1

3(2a)
= 2a+ 2

3b [0.6866..]

2
3(a+ 2b) + 1

3(2b)
= 2

3a+ 2b [1.74]

(b, b, b) 2 2a+ b [0.97] 3b [2.55]

(a, 0, 0) 2
3 · 1 + 1

3 · 0.97 = 0.99 2
3a [0.04] 2

3a [0.04]

(a, a, 0) 1 1
3(2a) + 2

3a = 4
3a [0.08] 1

3(2a) + 2
3a = 4

3a [0.08]

(b, 0, 0) 1 2
3a+ 1

3b [0.3233..] b [0.85]

(a, b, 0) 1 4
3a+ 1

3b [0.3633] 2
3a+ b [0.89]

(b, b, 0) 1 4
3a+ 2

3b [0.6466] 2b [1.7]

It is evident from the table that for deviations (a, b, b) and (b, b, b), E[v(W (b, p))] < E[b(W (b, p))],
and therefore they do not satisfy weakly no overbidding. For each of the remaining deviations, the
obtained expected utility (which equals E[v(W (b, p))]−E[p(W (b, p))]) is smaller than the current
expected utility (which equals 2a+ b = 0.97). We conclude that the strategy profile in the example
is a Bayesian equilibrium with weakly no overbidding bidders, as required.

We next give an example of a simultaneous second-price auction with general valuations that
include complementarity between items, for which there is an equilibrium under the restriction
of weak or strong no-overbidding, and whose social welfare is a factor of Ω(

√
m) worse than the

optimal welfare. This example complements an example of Hassidim et al. (2011), which shows a
similar lower bound for simultaneous first-price auctions with complementary valuations. In the
following example, all occurrences of no overbidding refer to both weak and strong no overbidding.

Example 2 (Bayesian Price of Anarchy is Ω(
√
m) for weakly no-overbidding bidders

with general valuations). Consider an auction with two bidders with the following valuations.
Bidder 1 has a valuation of 1 for the set that includes all the items, and a valuation of 0 for any
other set. Bidder 2 has a valuation of 1√

m
for any non-empty bundle. We claim that the following

strategy profile is an equilibrium under the no-overbidding restriction: Bidder 1 bids 0 on every
item, and bidder 2 bids 1√

m
on a uniformly random item, and 0 on all other items. The welfare

of this outcome is 1√
m

, compared to the optimal welfare of 1 (allocating all items to Bidder 1),

giving the promised factor of
√
m. It remains to verify that this profile is an equilibrium under

the no-overbidding restriction. Given the strategy of Bidder 1, it is clear that Bidder 2 has no
beneficial deviation. We next show that given the strategy of Bidder 2, Bidder 1 has no beneficial
no-overbidding deviation either. Clearly, bidding anything smaller than 1√

m
on any item is futile,

therefore it suffices to consider, without loss of generality, bidding strategies that place a bid of 1√
m
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on x out of m items, and 0 on the remaining ones. However, any such bid has an expected value of
x/m and expected bid of x/

√
m, violating the no-overbidding restriction. It follows that Bidder 1

has no beneficial no-overbidding deviation, and the assertion follows.

Remark: Recall that, as noted in Section 2.3, the profiles in Example 1 and Example 2 are
equilibria under the interpretation of no-overbidding as a strategy space restriction, rather than as
an equilibrium refinement notion.

6 A Lower Bound for Correlated Valuations

In this section we give a polynomial lower bound, Ω(n1/6), on the Bayesian price of anarchy for
first-price auctions with subadditive valuations, when the valuation distributions are correlated
among the bidders. In fact, our example will hold even when all valuations are unit demand. The
construction is based heavily upon a lower bound due to Bhawalkar and Roughgarden (2011) for
second-price auctions.

Example 3 ( High price of anarchy for correlated valuations and weakly no-overbidding
players ). There are n + (n + 1)

√
n items and 3n players. Players occur in triples. Each triple

contains one player of type I and two players of type II. A valuation from the correlated distribution
D is drawn as follows. First, a set T of

√
n items are selected at random; we will refer to these

items as the common pool. Next, n of the remaining items are selected at random and labelled
a1, . . . , an; we refer to these as the reserve items. Finally, the remaining n

√
n items are partitioned

into sets S1, . . . , Sn, each of size
√
n; we refer to these as the mock pools. Reserve item ai and

mock pool Si are matched with the ith triple of players.
Given the labelling of the items, the player valuations are as follows. There are two possibilities

for the valuation profile; an atypical case that occurs with probability p = 1
n1/6 , and a typical case

that occurs with the remaining probability 1 − p. In the typical case, each player of type II has
value n−1/6 for the corresponding reserve item ai, and each player of type I has value 1 for any
non-empty subset of the common pool plus the corresponding reserve item, T ∪{ai}. In the atypical
case, each player of type II has the zero valuation, and each player of type I, say from triple i, has
value 1 for any non-empty subset of the corresponding mock pool plus reserve item, Si ∪ {ai}.

First note that we can assume in a Bayes-Nash equilibrium that each player of type II always
bids n−1/6 on his reserve item, in the typical case. Bidding more than n−1/6 leads to negative
utility if he wins, and bidding less than n−1/6 allows the other type II bidder in the triple to obtain
positive utility by winning the item with a bid less than n−1/6. Thus both agents of type II in
a triple will bid n−1/6, causing both to have utility 0. In the atypical case, each type II bidder
trivially bids 0 on all items.

A player of type I, when bidding in equilibrium, cannot distinguish between the typical and
atypical cases; he always sees a set of

√
n+ 1 items for which he has value, and each item is equally

likely to be the reserve item. Note that it has to bid at least n−1/6 on the reserve item in order
to win it in the typical case. Suppose that the player bids at least n−1/6 on some number k of
the
√
n + 1 items. Then if the valuation profile is atypical the player will win all k items, and

pay at least k · n−1/6. The expected payment of the player is therefore at least pkn−1/6 = kn−1/3.
If k > n1/3 then the expected payment of the player is greater than 1, and hence his expected
utility is negative, contradicting the assumption of Bayes-Nash equilibrium. We therefore conclude
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that k ≤ n1/3. Each player of type I will therefore win its reserve item in the typical case with
probability at most k/(

√
n+ 1) < n−1/6.

We conclude that the social welfare of any Bayes-Nash equilibrium s satisfies

Ev,b∼s(v)

∑
i

vi(Wi(b))

 ≤ pn+ (1− p)(n · n−1/6 + n · n−1/6 · 1 +
√
n · 1) = O(n5/6)

where the expression for the typical case includes bounds on the value obtained by the type II
bidders, the value of the type I bidders who win reserve items, and the value of the type I bidders
who win items from the common pool, respectively. Since the optimal social welfare is at least n
in each case, the price of anarchy is at least Ω(n1/6).
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