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Abstract

It is well-known that in a directed graph, if deleting any edge will not affect the shortest distance
between two specific vertices s and t, then there are two edge-disjoint paths from s to t and both of
them are shortest paths. In this paper, we generalize this to shortest k edge-disjoint s-t paths for any
positive integer k.

1 Introduction

Given a directed graph G = (V,E) with weight w(e) on edge e ∈ E, let s, t ∈ V be two specific vertices.
A well-known result is that if after deleting any edge in the shortest path from s to t, there is still an
s-t path of the same length, then there are two edge-disjoint paths from s to t and both of them are
shortest path. This can be shown, e.g., by Menger’s theorem [2] considering the subgraph consisting of
all shortest s-t paths.

In this paper, we extend this result to shortest k edge-disjoint paths, given by the following claim.

Theorem 1. Let G = (V,E) be a directed graph with weight w(e) on each edge e ∈ E and no cycles of
negative weight. Given two specific vertices s, t ∈ V , assume that there are k edge-disjoint paths from s to
t. Let P1, P2, · · · , Pk be k edge-disjoint s-t paths so that their length L ,

∑k
i=1w(Pi) is minimized, where

w(Pi) =
∑

e∈Pi
w(e). Further, suppose that for every edge e ∈ E, the graph G− {e} has k edge-disjoint

s-t paths with the same total length L. Then there exist k+ 1 edge-disjoint s-t paths in G such that each
of them is a shortest path from s to t.

Note that the claim implies, in particular, that the original k edge-disjoint s-t paths P1, P2, · · · , Pk

are shortest paths. The proof of the theorem involves a careful examination of a specific real-valued min-
cost max-flow defined from the arithmetic average of |E| different integer-valued min-cost max-flows and
showing that any s-t path with positive amount of flows on each edge forms a shortest path. Details of
the proof are given in the next section.

The condition of deleting any edge will not affect the total length of shortest k edge-disjoint paths is
motivated from applications in game theory and mechanism design [5]. For example, we can consider all
vertices in G by geographical locations and edges by the corresponding paths between them. A shipping
company plans to carry k items from one location s to the other t. Due to capacity constraint, every edge
can carry at most one item. Further, for each edge, there is an associated cost c(e) (e.g. maintenance)
incurred to local people to provide their service. Therefore, the company has to make a payment to each
edge it uses to recover those costs. By a standard game theoretical assumption, all edges are selfish and
hope to receive as much payment as possible (given that their costs are recovered). In a market setting,
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each edge set up a price w(e) ≥ c(e) asking for the company. Given all (w(e))e∈E , naturally the company
will purchase k edge-disjoint paths with the smallest total payment, i.e. shortest k edge-disjoint paths
with respect to w(e). This defines a game among all edges where the strategy of each edge is the price
w(e) it determines. Nash equilibrium [4], where no edge can unilaterally increase its w(e) to receive more
payment, captures a stable state of the game and provides a natural solution to the market. In other
words, in a Nash equilibrium, if anyone increases its w(e) by any amount, the company will purchase
another set of k paths with the same total payment. This is exactly the condition given by the theorem.
Our theorem, on the other hand, gives a nice characterization of the marketplace in a Nash equilibrium.
Recently, we came to know that Kempe et al. [3] independently showed the same characterization of
Nash equilibrium when the graph is composed of k + 1 edge-disjoint paths.

2 Proof of the Theorem

Given the graph G and integer k, we construct a flow network Nk(G) as follows: We introduce two extra
nodes s0 and t0 and two extra edges s0s and tt0. The set of vertices of Nk(G) is V ∪ {s0, t0} and the set
of edges is E ∪ {s0s, tt0}. The capacity cap(·) and cost per bulk capacity cost(·) for each edge in Nk(G)
is defined as follows:

• cap(s0s) = cap(tt0) = k and cost(s0s) = cost(tt0) = 0.

• cap(e) = 1 and cost(e) = w(e), for e ∈ E.

Given the above construction, every path from s to t in G naturally corresponds to a bulk flow from
s0 to t0 in Nk(G). Hence, the set of k edge-disjoint paths P1, P2, . . . , Pk in G corresponds to a flow FG of
size k in Nk(G). In addition, the minimality of L =

∑k
i=1w(Pi) implies that FG achieves the minimum

cost (which is L) for all integer -valued flows of size k, i.e. maximum flow in Nk(G). Since all capacities
of Nk(G) are integers, we can conclude that FG has the minimum cost among all real maximum flows
in Nk(G), the details one can find in [1].

For simplicity, we denote the subgraph G−{e} by G−e. By the fact that for any e ∈ E, the subgraph
G−e has k edge-disjoint s-t paths with the same total length L, we know that in the network Nk(G−e),
there still is an integer-valued flow FG−e of size k and cost L. So FG−e is also an integer-valued flow of
size k and cost L in Nk(G). Define a real-valued flow in Nk(G) by F = 1

|E|
∑

e∈E FG−e. We have the
following observations:

1. It is clear that F(e) ≤ cap(e) for every arc e ∈ Nk(G), where F(e) is the amount of flow on edge
e in F , as we have taken the arithmetic average of the flows in the network.

2. F has cost 1
|E|

∑
e∈E

cost(FG−e) = 1
|E| · |E| · L = L.

3. Since FG−e(s0s) = k for any e ∈ E, we have F(s0s) = k. In addition, as each FG−e is a feasible
flow that satisfies all conservation conditions and F is defined by the arithmetic average of all
FG−e’s, we know that F also satisfies all conservation conditions.

Therefore, F is a minimum cost maximum flow in Nk(G). In addition, F has the following nice property,
which plays a fundamental role for the proof:

• For every edge e ∈ Nk(G) except s0s and tt0, we have F(e) ≤ cap(e)− 1
|E| , as FG−e does not flow

through e, i.e. FG−e(e) = 0, and FG−e′(e) is either 0 or 1 for any e′ ∈ E.
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Let E+ = {e ∈ Nk(G) | F(e) > 0}. Suppose that there is a path P ′ = (e1, e2, . . . , er) from s0 to t0
which goes only along arcs in E+ and is not a shortest path w.r.t cost(·) from s0 to t0 in Nk(G). Let
ε = min

{
F(e1),F(e2), . . . ,F(er), 1

|E|

}
. Since P ′ ⊆ E+, we have ε > 0. Let P be a shortest path w.r.t

cost(·) from s0 to t0 in Nk(G). Define a new flow F ′ from F by adding ε amount of flow on path P and
removing ε amount of flow from path P ′. We have the following observations about F ′:

1. F ′ satisfies all conservation conditions, as it is a linear combination of three flows from s0 to t0:
F ′ = F + ε · P − ε · P ′.

2. The size of flow F ′ is k.

3. By the definition of ε, the amount of flow of each edge is non-negative in F ′. Further, F ′ satisfies the
capacity constraints. This follows from the facts that ε ≤ 1

|E| and the above property established
for F .

4. The cost of F ′ is smaller than L because cost(F ′) = cost(F) − ε(cost(P ′) − cost(P )), which is
smaller than L = cost(F) as cost(P ) < cost(P ′) by the assumption.

Hence, F ′ is a flow of size k in Nk(G) with cost smaller than F , a contradiction. Thus, every path from
s0 to t0 in Nk(G) along the edges of E+ is a shortest path w.r.t cost(·).

Consider a new network N ′k+1(G) obtained from Nk+1(G) by restricting edges on E+. (Note that
the only difference between Nk+1(G) and Nk(G) is the capacity on edges s0s and tt0, k + 1 rather than
k.) We claim that in this network there is an integer-valued flow of size k + 1. Suppose otherwise, by
max-flow min-cut theorem, there is a cut (Ss0 , Tt0) in N ′k+1(G) with size less than or equal to k. By
definition, in N ′k+1(G) we have cap(s0s) = k+1 and cap(tt0) = k+1, which implies that s0, s ∈ Ss0 and
t0, t ∈ Tt0 . By the definition of E+, we know that the total amount of flows in F on the cut (Ss0 , Tt0)
is k. Since F(e) < 1 for any edge e of G, we can conclude that there are at least k + 1 edges from Ss0

to Tt0 in E+. This leads to a contradiction, because we have shown that the size of the cut (Ss0 , Tt0) is
less than or equal to k.

Therefore, we can find an integer-valued flow of size k + 1 on edges of E+ in the network Nk+1(G).
Such a flow can be thought as the union of k+ 1 edge-disjoint paths from s0 to t0. We know that every
such path going along edges in E+ is a shortest path from s0 to t0. This in turn concludes the proof,
since we have found k + 1 edge-disjoint shortest paths from s to t in G.
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