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We consider the Bayesian online selection problem of a matching in bipartite graphs, i.e., the weighted online

matching problem where the edges arrive online and edge weights are generated from a known distribution.

This setting corresponds to the intersection of two matroids in the work of Kleinberg and Weinberg (2012)

and Feldman et al. (2016). We study a simple class of non-adaptive policies which we call vertex-additive

policies. A vertex-additive policy assigns static prices to every vertex in the graph and accepts only those

edges whose weight exceeds the sum of the prices on the edge endpoints. We show that there exists a vertex-

additive policy with the expected payoff of at least one third of the prophet’s payoff and present a gradient

descent algorithm that quickly converges to the desired vector of vertex prices. Our results improve on the

adaptive online policy of Kleinberg and Weinberg and Feldman et al. for the intersection of two matroids in

two ways: our policy is non-adaptive and has better approximation guarantee of 3 instead of the previous

guarantees of 5.82 in Kleinberg and Weinberg and 5.43 in Feldman et al. We give a complementary lower

bound of 2.25 for any online algorithm in the bipartite matching setting.
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1. Introduction The topic of prophet inequality broadly refers to the study of trade offs

between online and offline selection algorithms in Bayesian settings. The first fundamental result is

due to Krengel and Sucheston [41], who considered the following problem in the optimal stopping

theory. Let X1, . . . ,Xn be a sequence of independent, non-negative random variables with E[Xi]<

+∞, then there is an online stopping policy τ such that

2 ·E [Xτ ]≥E
[
max
i
Xi

]
. (1)

I.e., if a gambler plays a sequence of games with rewards X1, ...,Xn and can stop at any time and

take the most recent reward, then a prophet who can foretell which reward to take in the whole

sequence cannot gain more than two times the reward of the gambler. In fact, it was later shown by

Samuel-Cahn [50] that a simple stopping policy with a uniform threshold c : τ = argmini(Xi ≥ c)

gives the same approximation guarantee of 2.

In computer science terms, inequality (1) compares the performance of an online algorithm (the

gambler) and the offline optimal solution (the prophet) in the competitive analysis framework.

Results in the form of inequality (1) have been extended to Bayesian settings where the algorithm

has to select a feasible subset of elements from a random sequence of samples with the knowledge

about the distribution from which this sequence is generated and where the value of the selected

set is compared to the offline optimum solution with the complete information about the sequence

of samples. For example, a general result of this type is due to Kleinberg and Weinberg [40], who

gave a 4k−2 competitive algorithm for the Bayesian selection problem where the system of feasible

sets can be represented as the intersection of k matroids.

The interest in prophet inequalities as a tool for the design and analysis of algorithms has been

largely driven by important applications in algorithmic mechanism design. In particular, the work

in Bayesian mechanism design showed a remarkable power of simple sequential posted price mech-

anisms in a variety of settings such as auctions for unit-demand bidders [10],[2] and combinatorial

auctions [27],[19],[21]. The underlying environment for all these applications is matching in bipartite

graphs.

Matching. In this paper, we adopt the general online Bayesian model of Kleinberg and Wein-

berg [40] for selecting a matching in bipartite graphs. Specifically, we assume that edges of a bipartite

graph are the elements of our online selection problem which may arrive in an arbitrary order. The

edge values are independently generated from the prior distributions that are known to the online

algorithm. Upon arrival of a new edge the algorithm observes its value and must immediately and

irrevocably decide whether to include this edge in the matching or not. The algorithm’s objective

is to maximize the total value of the selected matching.
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This model is more general than the matching (unit-demand) models or sequential posted prices

from the mechanism design literature (e.g., [27],[19]). Indeed, the previous work mostly focuses on

one-sided vertex arrival models, i.e., where vertices on one side of the graph arrive online and the

values of all edges incident to a new vertex are revealed to the online algorithm1. On the practical

side, the edge arrival model (as opposed to vertex arrival) gives a finer control over agent preferences

which may not be available upon arrival of a new agent and also may dynamically evolve over time.

Non-adaptive pricing. The online policy for more general selection problems proposed by

Kleinberg and Weinberg [40] is highly adaptive, i.e., the threshold rule for accepting or rejecting a

particular element changes over time depending on the values of the previous observed elements.

A more desirable approach is to use static thresholds that are computed beforehand and do not

change with the arrival of new elements. Such non-adaptive policies translate to simpler and more

robust mechanisms that enjoy better incentive properties and are more fair to the agents. Indeed,

such mechanisms are group strategy proof, credible (i.e., agents do not need to trust the mechanism

designer), and timing of the agent arrivals has a limited influence on the outcome of the mechanism.

Given this it is not surprising that most applications in the mechanism design literature starting

with the work of Hajiaghayi et al. [31] and Chawla et al. [10] rely on non-adaptive versions of prophet

inequality. For example, Chawla et al. [10] refers to the result of Samuel-Cahn [50] that uses simple

and robust constant threshold policy c but not the earlier version of Krengel and Sucheston [41]

which compares the optimal online and offline policies. Similarly, Feldman et al. [27] use static item

prices that never change throughout the execution of their algorithm.

Our results. In this paper, we prove a non-adaptive prophet inequality for selecting a matching

in bipartite graphs. Our online algorithm belongs to a natural class of simple vertex-additive thresh-

old policies: (i) vertices on either side of the graph receive threshold values l= (l1, . . . , ln) for the left

hand side and r= (r1, . . . , rm) for the right hand side vertices (ii) the online algorithm accepts every

edge e= (i, j) that can be added to the current matching if v(e)≥ li+ rj. We find a vertex-additive

policy with the expected payoff of at least one third of the prophet’s payoff (the expected value of

the optimal matching), i.e., we give a 3 approximation guarantee. We give a complementary lower

bound of 2.25 that shows clear separation from the setting where vertices from one side arrive online

and where the upper bound is 2 (see, e.g., [27]).

The closest to our results are the papers by Kleinberg and Weinberg [40] and Feldman et al. [28].

The former derives a 4p− 2-approximation prophet inequality for the intersection of p matroids (a

more general feasibility constraint than our bipartite matching setting). The later derives prophet

1 To be fair, the independence assumption (for all edges) is a bit stronger than in some mechanism design models
with vertex arrivals. However, without this assumption, it is impossible to recover constant fraction of the prophet.
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inequalities via online contention resolution schemes (OCRS) in a variety of settings including

intersection of p matroids, matching in general graphs, and knapsack feasibility constraint. There

are a few aspects that differentiate our work from these two papers.

• Assumptions on the arrival order. The framework of [40] assumes that the elements arrive in an

unknown order chosen by the oblivious adversary, i.e., the adversary picks the order before seeing

the realization of the elements’ values. The results in [40] also hold against a stronger adaptive

adversary who makes decisions about arrival order concurrently with the online algorithm, i.e., the

adversary can choose which element will arrive next based on the values of the previous elements

and previous choices of the online algorithm. The OCRS approach in [28] allows to obtain results

against the strongest almighty adversary, who decides on the arrival order after seeing all realized

values. Similar to [40] we assume that the adversary is oblivious. Our analysis also works against

the adaptive adversary but not the almighty adversary.

• Approximation guarantee. Matching in bipartite graphs can be represented as an intersection

of p= 2 matroids. For this special case [40] slightly improves the approximation guarantee of 6 to

5.82 and [28] has a 2 · e= 5.43 approximation. In both cases the best known lower bound was 2. We

obtain a much tighter approximation of 3 complemented by an improved lower bound of 2.25.

• Adaptivity and pricing mechanisms. The policies for accepting new elements in [40] and [28]

are more complex than our scheme: they cannot be described by a simple rule with precomputed

thresholds on every element subject to the feasibility constraint. The mechanism in [40] is not an

oblivious posted pricing, i.e., the mechanism keeps changing the item prices over time. The respective

mechanisms in [28] are constraint oblivious posted pricing, i.e., the item prices are calculated in

advance but the feasibility constraint is modified to a subfamily of the original feasible sets.

Our techniques. The analysis of our algorithm consists of two stages. First, we estimate the

expected performance of a vertex-additive policy parametrized by the generic price vectors l,r. This

part of the analysis is similar in many ways to [40, 27, 19]. The performance of the algorithm is

decomposed into the revenue and the surplus parts. We count the revenue of the algorithm similarly

to [40, 27, 19]: we also put the prices on the vertices rather than the elements of the set system

(edges in the bipartite graph). On the other hand, we estimate the surplus term per every edge of

the bipartite graph and not per every vertex.

After we take the expectation over all valuation profiles, we get a parametric estimate (11) that

depends on two statistics for the distribution of the optimal offline matching: (i) the expected value

contributions of every edge (i, j) to the maximum matching; (ii) the probabilities of every edge (i, j)

to appear in the maximum matching. We conveniently write down these statistics in the matrix

form: M for (i) and Q for (ii). The estimate (11) has a new variable - the set of matched vertices.
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We treat this variable as if it is chosen by an adversary, similar to the argument in [40, 27, 19].

What separates our analysis from the prior work is that we optimize our prices l,r based on the

both statistics M,Q. Note that [40, 27, 19] operate only with the expected contributions to the

optimum, while online contention resolution schemes in [28, 24] only look at the probability of the

elements to appear in the offline optimum and choose their prices to control the probabilities of

accepting elements in the online algorithm.

In the second stage of our analysis, we show the existence of good prices l,r in the estimate (11).

That stage is highly non trivial, since our maximization problem (11) also contains adversarially cho-

sen variables, i.e., (11) is a max-min optimization problem. We convert (11) into a bilinear algebraic

form. Then we relax it to a simpler semi-linear (it is not linear because we have [·]+ : x→max(x,0)

operator besides linear transformations) max-min optimization problem (15) which has a smaller

value than (11). The later problem resembles the Lagrangian relaxation of a constrained optimization

problem where the constraints are given by a system of equations (16) and the adversarial variables

in (15) correspond to the Lagrangian multipliers. The objective in (15) after eliminating the terms

with adversarial variables is called virtual surplus. We show that the system of constraints (16) has

a solution. This solution gives us vertex prices l,r and conveniently eliminates all the terms with

the adversarial variables from (15). We show in (17) that 3 times the virtual surplus covers the

expected optimum opt= 1>
L
·M ·1

R
given the constraints (16). Furthermore, the proof that system

of equations (16) has a solutions is constructive: we give a gradient-descent algorithm that quickly

converges to the solution.

1.1. Related Work Starting with the work of Krengel and Sucheston [41] there has been a

lot of work studying different restrictions on stopping rules, distributions, independence assumption

etc., which is too broad to discuss in this amount of space. We recommend [32] for a detailed

survey. The line of earlier work [37, 38, 39] on multiple-choice prophet inequalities, where the online

algorithm and the prophet can choose more than one element, is particularly relevant to our paper.

In computer science literature, the research on prophet inequalities and their applications to

posted price mechanisms was initiated by Hajiaghayi et al. [31]. Prophet inequalities were obtained

for a variety of multiple choice combinatorial settings: for a matroid and an intersection of

matroids [40, 6, 28], for polymatroids [22], for the generalized assignment problem [3, 4], and for

the general downward closed feasibility constraints [47]. In algorithmic mechanism design, Chawla

et al. [9] have found approximately optimal in terms of revenue posted price mechanisms for the

unit-demand buyers. Other results on Bayesian auctions with the objectives of revenue and welfare

maximization include [10, 2, 13] for unit-demand buyers, and [2, 27, 19, 48, 21] for combinatorial

auctions. A direct connection between pricing mechanisms and prophet inequalities is shown in [16].
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Mechanism design applications of the prophet inequality have instigated further studies of dynamic

posted prices in other online optimization settings such as a k-server problem [12], and the makespan

minimization for the scheduling problems [26].

A recent literature on prophet inequalities mostly focuses on the issue of limited knowledge of

the value distributions, i.e., the online algorithm instead of the perfect information about the prior

distributions is given only certain statistics or has an access to a limited number of samples from

the priors [6, 15, 14, 49].

Online matching. Our matching setting is closely related to the online bipartite matching

problem introduced by Karp et al. [36] which is a central topic in the area of online algorithms with

a wide range of applications. In this model one side of the bipartite graph is given in advance, while

the vertices of the other side arrive online in an arbitrary order. The online algorithm observes all

the edges incident to a new vertex, however the algorithm does not have any prior information about

distribution of the edges (typically in this line of work edges have only 0− 1 weights). Karp et al.

gave the tight 1.58 approximation guarantee for the adversarial order of vertex arrivals. The result

was extended to the settings with weighted vertices [1] and Adword problem [45]. The latter work

considers generalized matching where each edge has a weight and each vertex in the given side of

the graph has a budget (capacity constraint). Earlier work [45, 7] on the Adword problem focused

on the worst-case performance guarantees for the adversarial or random arrival order [29, 17]. More

recent papers adopt the Bayesian framework in which distribution of weights (bids) is usually known

in advance, e.g., [25, 42, 35, 43, 30, 30, 46, 18]. A few papers consider matching models closer

to our edge arrival setting. E.g., McGregor [44] gave a 5.82-competitive online algorithm for the

(weighted) edge arrival model with preemption.2 Better approximation guarantees were obtained

for randomized algorithms [23] and for the special cases of growing tree and forests [11, 8]. A very

recent line of work [33, 5, 34] considers the fully online matching model in (unweighted) bipartite

graphs where vertices of both sides arrive online and reveal edges to all previous vertices. In this

model [34] gave a tight 1.76-competitive algorithm.

A follow up paper (to the conference version of our work) by Ezra et al. [24] has slightly improved

the approximation guarantee to 2.96. They used a different OCRS-type algorithm that works for

general (non bipartite) graphs. However, their algorithm is highly adaptive (it updates the thresholds

on the edges at every round) and unlike other OCRS in [28] works only against the adaptive

adversary.

2 I.e., the online algorithm can discard any previously matched edges. Note that 5.82 = 3+2
√
2 is exactly the same

approximation ratio as in Kleinberg and Weinberg.
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2. Preliminaries Let G(L,R) be a bipartite multi-graph between the left and the right parts

L,R with |L| = n and |R| =m vertices. The graph has a set of multi-edges E between L and R

with different values ve ∈ R+ for each edge e ∈ E, where R+ denotes the set of non-negative real

numbers. The edges arrive online in an unknown order σ = (e(t))t=Tt=1 , where edges are enumerated

by their arrival time from 1 to T = |E|. For a given profile of values v= {ve}e∈E, we let opt(v) to

denote the value of the maximum (offline) matching in the graph G with edge values v.

Bayesian online selection problem. We consider a Bayesian setting, where edge values

are drawn independently from the distributions {Fe}e∈E. Write F =
∏
e∈E Fe, so that the joint

valuation profile v of all edges is drawn from the joint distribution v∼F . Both the graph G and the

distribution F are known in advance. An input to the Bayesian online selection problem (BOSP)

is a sequence σ of pairs (e(t), ve(t))
t=T
t=1 revealed one by one from time t = 1 to t = T . An online

selection algorithm (also called online policy) A3 upon receiving a new piece of input (e(t), ve(t)) at

time t must irrevocably decide whether to take the edge e(t) subject to the feasibility constraint

that the selected set of edges is a matching. The goal of the online algorithm A is to maximize the

total value of the selected edges in expectation over v∼F .

Every online policy at each time τ ∈ [T ] may be described as a function of the past selection

decisions (not the edge values), since the posterior distribution of values and feasibility constraint for

the edges coming after time τ (for a fixed sequence of past decisions) do not depend on the realized

values before time τ . We use A(v, σ) to denote the set of all edges accepted by an online selection

algorithm A. When it is clear from the context, we sometimes will drop the dependency on the

arrival order σ. Without loss of generality, one may restrict attention to monotone selection policies,

i.e., policies that for any given history before time τ select the edge e(τ) with higher probability for

larger values of ve(τ). It means that any monotone deterministic selection policy can be described by

a sequence of thresholds (δτ (σ,v))
τ=T
τ=1 , where each threshold δτ only depends on the prior history

(ve(t))
τ−1
t=1 , such that edge e(τ) is accepted if and only if ve(τ) ≥ δτ and neither of vertices i, j incident

to e(τ) = (i, j) was covered by previously selected edges.

Approximation guarantees. The algorithm A is agnostic to the order of edge arrivals, that

is A should perform well regardless of the arrival order of the edges. We study performance of A

in the worst-case for a fixed-order adversary which is the standard assumption in the prior work on

BOSP. Formally, we assume that an adversary selects the order σ of edge arrivals (or distribution of

different orders) that does not change with the choices of algorithm and/or realized edge values. As

the optimal solution is usually quite complex even in the most basic settings, the performance of the

3 The algorithm A can be randomized, but it must be independent of the randomness (if any) in the choice of σ. Any
randomized algorithm is a distribution over deterministic policies.
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online policy A is compared against a stronger benchmark of the expected prophet’s performance

who knows all the realized values v in advance before selecting any edges, i.e., the benchmark is the

offline optimum solution. Prophet inequality refers to the approximation guarantee of ρ that online

algorithm can achieve compared to the prophet, i.e., for any arrival order σ

ρ · E
v∼F

 ∑
e∈A(v,σ)

ve

≥ E
v∼F

[opt(v)] .

3. Online Algorithm Our algorithm belongs to a natural class of simple non-adaptive thresh-

old policies that we call vertex-additive policies. Any vertex-additive policy (denoted as V-add) is

described by two positive real vectors l= (l1, . . . , ln) and r= (r1, . . . , rm) that accepts a new arriving

edge e(t) = (i, j) with value ve(t) if and only if

1. vertices i, j are available, i.e., both i∈L, j ∈R are not covered by previously accepted edges;

2. edge’s value exceeds the sum of its vertex thresholds ve(t) ≥ li+ rj.

If at least one of the previous two conditions fails, then the edge e(t) is rejected.

3.1. Analysis of the vertex-additive policies We assume that incoming edges (e(t))t=Tt=1 of

the graph G arrive in a fixed order σ, which is unknown to us. The total value of the accepted

edges consists of two parts: (i) the revenue that is equal to the sum of accepted edges’ thresholds,

i.e., the total payment received by the algorithm if it takes from each accepted edge a price equal

to its threshold; (ii) the surplus which is equal to the sum of extra values that every accepted

edge contributes to the total value on top of its guaranteed threshold payment. We will use the

price terminology interchangeably with the thresholds when referring to the vertex-additive policy.

In the following we analyze separately the revenue and the surplus parts of any vertex-additive

policy A= V-add(l,r). To simplify notations we use A(v) to denote the set of accepted edges for a

particular run of V-add(l,r) on the valuation profile v.

Revenue. The important property of the vertex-additive prices is that we can conveniently

attribute the expected revenue of our policy (denoted as Rev) to the average set of covered vertices

instead of the set of accepted edges. We denote the final set of covered vertices of A(v) for a given

valuation profile v as X(v) that consists of the vertex sets X
L
(v) ,X

R
(v) respectively in the left and

the right parts of G. The expected revenue can be written as follows.

Rev=E
v

 ∑
(i,j)∈A(v)

(li+ rj)

=E
v

 ∑
i∈X

L
(v)

li+
∑

j∈X
R
(v)

rj

 (2)
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Surplus. We can give a lower bound on the expected surplus using the edges between uncovered

vertices of V-add(l,r). The expected surplus (denoted as Surplus) by definition is equal to

Surplus def
= E

v

 ∑
e(t)∈A(v)
e(t)=(i,j)

[
ve(t)− li− rj

]+
 , (3)

where
[
ve(t)− li− rj

]+ denotes max{(ve(t)− li−rj),0}. Since our goal is to compare the surplus with

the optimal matching selected by the prophet, we focus on the edges in the optimal matching opt(v̂),

i.e., the optimal matching for another independently drawn valuation profile v̂ ∼ F . Specifically,

our lower bound will include all the edges in a random optimal matching opt(v̂) between uncovered

vertices for the valuation profiles v. To deal with the specific edges (i, j) in the optimal matching

opt(v̂) we employ indicator random variable I(i,j)opt(v̂) for the event that there is an edge e(t)∈ opt(v̂)

between vertices i∈L, j ∈R and random variable χ(i,j)
opt (v̂):

χ
(i,j)
opt (v̂)

def
=

{
v̂e(t) if ∃e(t)∈ opt(v̂) s.t. e(t) = (i, j),

0 if (i, j) /∈ opt(v̂)
I(i,j)opt(v̂)

def
=

{
1 if (i, j)∈ opt(v̂),
0 if (i, j) /∈ opt(v̂).

(4)

Lemma 1. The expected surplus is at least

Surplus≥E
v

 ∑
i/∈X

L
(v)

j /∈X
R
(v)

[
E
v̂

[
χ
(i,j)
opt (v̂)

]
− (li+ rj)E

v̂

[
I(i,j)opt(v̂)

]]+
 , (5)

where Ev̂[I(i,j)opt(v̂)] can be also written as Prv̂[(i, j)∈ opt(v̂)].

Proof. To analyze performance of a vertex-additive policy V-add(l,r) we consider another indi-

cator random variable Ii,jfree(v, t) of v ∼ F that indicates whether vertices i ∈ L, j ∈ R are free to

take (not yet covered) on the valuation profile v right before the arrival of the edge e(t) at time t.

The surplus of V-add is given by (3) which we further rewrite and bound as follows

Surplus=E
v

∑
i∈L
j∈R

∑
t:e(t)=(i,j)

[
ve(t)− li− rj

]+ · Ii,jfree(v, t)


= E
v,v̂

∑
i,j

∑
t:e(t)=(i,j)

[
v̂e(t)− li− rj

]+ · Ii,jfree(v, t)


≥ E
v,v̂

∑
i,j

∑
t:e(t)=(i,j)

[
v̂e(t)− li− rj

]+ · Ii,jfree(v, T +1)

 , (6)

where the second equality holds, since the indicator function Ii,jfree(v, t) does not depend on ve(t) and

thus is independent of the value of
[
ve(t)− li− rj

]+ which we substituted with another independent
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and identically distributed random variable
[
v̂e(t)− li− rj

]+; and the inequality holds simply because

Ii,jfree(v, t) is a decreasing function in time t4. We note that the right hand side (RHS) of (6) can be

directly related to the sets of covered vertices X
L
(v) ,X

R
(v).

RHS(6)=E
v

 ∑
i/∈X

L
(v),

j /∈X
R
(v)

∑
t:e(t)=(i,j)

E
v̂

[[
v̂e(t)− li− rj

]+]
≥E

v

 ∑
i/∈X

L
(v),

j /∈X
R
(v)

E
v̂

[[
χ
(i,j)
opt (v̂)− li− rj

]+]
 , (7)

where to get the last inequality we ignored some non negative terms
[
v̂e(t)− li− rj

]+ in the previous

summation and counted only the edges between i /∈X
L
(v) and j /∈X

R
(v) that appear in the optimal

matching opt(v̂). To conclude the proof we will use the following simple fact about function [·]+.

Fact 1. E[[s]
+
]≥ [E[s]]

+ for any real random variables s.

Before we continue with the lower bound of (RHS) (7), we observe that
[
χ
(i,j)
opt (v̂)− li− rj

]+
=[(

χ
(i,j)
opt (v̂)− li− rj

)
· I(i,j)opt(v̂)

]+
=
[
χ
(i,j)
opt (v̂)− (li+ rj) · I(i,j)opt(v̂)

]+
for any fixed vertices i ∈ L, j ∈ R,

and valuation profile v̂. Indeed, by definition χ(i,j)
opt (v̂) = 0 and, therefore,

[
χ
(i,j)
opt (v̂)− li− rj

]+
= 0

whenever indicator I(i,j)opt(v̂) = 0. Finally, we obtain the required lower bound on the (RHS) of (7).

Surplus≥RHS(7)=E
v

 ∑
i/∈X

L
(v),

j /∈X
R
(v)

E
v̂

[[(
χ
(i,j)
opt (v̂)− li− rj

)
· I(i,j)opt(v̂)

]+]


≥E
v

 ∑
i/∈X

L
(v),

j /∈X
R
(v)

[
E
v̂

[
χ
(i,j)
opt (v̂)

]
− (li+ rj) ·E

v̂

[
I(i,j)opt(v̂)

]]+
 ,

where the last inequality follows from the Fact 1 applied to the random variable s1 − s2, where

s1
def
= χ

(i,j)
opt (v̂) and s2

def
= (li+ rj) · I(i,j)opt(v̂). �

Remark 1. Although we present the proof for the oblivious adversary (i.e., there is an unknown

but fixed arrival order of the edges), our analysis extends to a stronger adaptive adversary that

chooses the arrival order of the elements concurrently with the online algorithm. That is the adver-

sary decides on the arrival of the edges one-by-one and picks the next edge e(v, t) knowing the

sequence of the previous values (ve(1), ve(2), · · · , ve(t−1)) and the previous choices of the online algo-

rithm. Indeed, we only use the independence between ve(t) and Ii,jfree(v, t) in the above derivations

which still holds against the adaptive adversary regardless of the choice of e(t) at time t.

4 Time T +1 denotes the time after arrival of the last edge.
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Formally, we just need to rewrite the equation (6) as follows.

Surplus=E
v

∑
i∈L
j∈R

∑
e:e=(i,j)

∑
t

[ve− li− rj]+ · Ii,jfree(v, t) · Ie=e(t)


= E

v,v̂

∑
i,j

∑
e:e=(i,j)

∑
t

[v̂e− li− rj]+ · Ii,jfree(v, t) · Ie=e(v,t)


≥ E

v,v̂

∑
i,j

∑
e:e=(i,j)

[v̂e− li− rj]+ · Ii,jfree(v, T +1)

 ,
where the second equality holds because Ii,jfree(v, t) · Ie=e(v,t) is independent from ve; the inequality

holds, since Ii,jfree(v, t) is a decreasing function of t and there is only one t such that Ie=e(v,t) = 1.

3.2. Optimization of V-add(l,r) parameters. The V-add policy has two variable parameters

l,r representing the prices on the vertices in the left and right parts of G. We now show how to

choose these parameters in order to achieve good approximation of the prophet. We cast our problem

into a linear algebraic form. In this section, we derive this formulation and show how an implicitly

described (via certain semi-linear equation) solution to this problem yields a 3-approximation to the

prophet’s expected value. We give a gradient-descent algorithm that efficiently calculates vectors

l,r up to any given precision error in the following section.

Our linear algebraic formulation is based on the lower bounds (2) and (5) for the revenue and

surplus terms of the vertex-additive policy V-add(l,r). Namely, the expected value of the V-add(l,r)

is at least the sum of the right hand sides of (2) and (5)

E
v
[V-add(l,r)]≥E

v

 ∑
i∈X

L
(v)

li+
∑

j∈X
R
(v)

rj +
∑

i/∈X
L
(v)

j /∈X
R
(v)

[
E
v̂

[
χ
(i,j)
opt (v̂)

]
− (li+ rj)E

v̂

[
I(i,j)opt(v̂)

]]+
 . (8)

We note that RHS of (8) is calculated in expectation over all valuation profiles v∼F , which only

determines the sets X
L
(v) and X

R
(v). We further relax the bound in RHS of (8) by letting the sets

X
L
(v) ,X

R
(v) to be selected by an adversary who wants to minimize our performance guarantee. Let

the worst-case sets be S
L
⊆L for X

L
(v) and S

R
⊆R for X

R
(v). Hence,

E
v
[V-add(l,r)]≥ min

S
L
,S
R

∑
i∈S

L

li+
∑
j∈S

R

rj +
∑
i/∈S

L
j /∈S

R

[
E
v̂

[
χ
(i,j)
opt (v̂)

]
− (li+ rj)E

v̂

[
I(i,j)opt(v̂)

]]+
 . (9)

We rewrite RHS of (9) by introducing two n×m matrices M and Q that respectively comprise

expected contributions and selection probabilities to the optimal matching of the edges between all

pairs of vertices i∈L and j ∈R. Formally,
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M
def
=


...

· · · E
v
[χ

(i,j)
opt (v)] · · ·
...


i,j∈[n×m]

and Q
def
=


...

· · · Pr
v
[(i, j)∈ opt(v)] · · ·

...


i,j∈[n×m]

(10)

Thus lower bound (9) can be written as

E
v
[V-add(l,r)]≥ min

S
L
,S
R

∑
i∈S

L

li+
∑
j∈S

R

rj +
∑
i/∈S

L
j /∈S

R

[Mi,j − (li+ rj) ·Qi,j]
+

 . (11)

On the other hand, the expected value of the optimal matching opt achieved by the prophet accord-

ing to the definitions of matrix M (see (10),(4)) is equal to

opt= 1>
L
·M ·1

R
, (12)

where 1
L
,1

R
are n and m dimensional vectors with all coordinates equal to 1.

Now RHS of (11) can be rewritten using linear algebraic notations. To this end we change vectors

l,r to diagonal n×n and m×m matrices L,R, and represent sets S
L
, and S

R
respectively as vectors

α∈Rn, β ∈Rm with

L
def
= diag(l), R

def
= diag(r), α[i]

def
=

{
1 if i∈ S

L

0 if i /∈ S
L

, β[j]
def
=

{
1 if j ∈ S

R

0 if j /∈ S
R

. (13)

With these notations at hand, RHS of (11) is equal to

min
α∈{0,1}n
β∈{0,1}m

(
α> ·L ·1

L
+1>

R
·R ·β+(1

L
−α)> · [M−L ·Q−Q ·R]

+ · (1
R
−β)

)
, (14)

where [A]
+ is a matrix operator that changes each (i, j) entry of the matrix A

def
= M − L ·Q −

Q ·R to [A[i, j]]
+
=max{0,A[i, j]}. Our optimization problem is to find vertex prices l,r so as to

maximize expression (14) with diagonal matrices L = diag(l),R = diag(r). Now we can state our

main approximation guarantee.

Theorem 1. There are vertex prices l,r such that vertex-additive policy V-add(l,r)≥ opt
3
.

Proof. We will find non negative price vectors l,r, s.t. (14) ≥ opt
3

for L = diag(l),R = diag(r).

Let A+ def
= [A]

+
= [M−L ·Q−Q ·R]

+ which we call virtual surplus matrix. We view the algebraic

expression under minimization in (14) as a bilinear function of α,β and rewrite it as a separate

sum of the constant, linear, and bilinear terms. Note that our optimization problem at hand is

the max-min semi-bilinear (we say semi-bilinear and not bilinear, because the []+ operator breaks

linearity) problem where minimization is taken over two vectors α,β ∈ [0,1]n and maximization
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is taken over the matrices L and R that appear in the virtual surplus matrix A+. We relax and

simplify the problem to be semi-linear in the minimization part by dropping positive bilinear term

α> ·A+ ·β≥ 0.

(14)=min
α,β

(
1>
L
·A+ ·1

R
−α> ·

[
A+ ·1

R
−L ·1

L

]
−
[
1>
L
·A+−1>

R
·R
]
·β+α> ·A+ ·β

)
≥min

α,β

(
1>
L
·A+ ·1

R
−α> ·

[
A+ ·1

R
−L ·1

L

]
−
[
1>
L
·A+−1>

R
·R
]
·β
)
, (15)

where the last inequality holds, since α> ·A+ ·β ≥ 0 for any choice of α,β vectors (recall that all

entries in the virtual surplus matrix A+ and vectors α,β are non negative). We believe that the

relaxation (15) admits an optimal solution that satisfies the following system (16) of semi-linear

equations (it is not linear, since matrix A+ has a non linear dependency, e.g., on L due to [·]+

operator)5. {
A+ ·1

R
=L ·1

L

1>
L
·A+ = 1>

R
·R.

(16)

We note that if (16) holds, then RHS of (15) is independent of α,β and is equal to 1>
L
·A+ · 1

R
,

which we call the virtual surplus. For the remainder of the proof, we assume that the system of

equations (16) has a solution and prove the required bound on the expected value of the prophet,

opt. We give an algorithmic proof for the existence of the solution to (16) in the next section.

We observe that the following two vector inequalities in Fact 2 hold true (recall that the matrix

Q is the probability matrix for the optimal matching to have each edge (i, j)).

Fact 2. 1
L
�Q ·1

R
and 1>

R
� 1>

L
·Q, where � stands for the coordinate-wise inequality ≥.

Finally, we show that the expression (14) is at least 1
3
opt of the prophet’s expected value.

3 · (14)≥ 3 ·1>
L
·A+ ·1

R
= 1>

L
·A+ ·1

R
+1>

L
·L ·1

L
+1>

R
·R ·1

R

≥ 1>
L
·A+ ·1

R
+1>

L
·L ·

(
Q ·1

R

)
+
(
1>
L
·Q
)
·R ·1

R

= 1>
L
· (A+ +L ·Q+Q ·R) ·1

R
≥ 1>

L
·M ·1

R
= opt, (17)

where the first inequality and the first equality directly follow from (16) and (15); to get the second

inequality we observe that all entries in L,R,1
R
, and 1

L
are non negative and also use the Fact 2;

to get the last inequality, we notice that matrices A+,L,R,Q and vectors 1
R
,1

L
have non negative

entries and observe that, since A+ = [M−L ·Q−Q ·R]
+, n×m, the matrix (A+ +L ·Q+Q ·R)

dominates n×m matrix M in every entry; the last equality is (12). �

5 We do not provide a proof for the optimality of the solution to (16), since we do not have a short formal argument
and it is not required anywhere in the proof of Theorem 1.
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3.3. Algorithmic solution to the system of semi-linear equations (16) In this section,

we describe a gradient descent type algorithm that solves system of equations (16) up to an arbitrary

precision error ε in polynomial in n,m, and log(ε−1) time. We start by rewriting (16) as a system

of equations in l= (l1, . . . , ln) and r= (r1, . . . , rm) variables.
li =

m∑
j=1

[Mi,j −Qi,j(li+ rj)]
+ ∀i∈ [n],

rj =
n∑
i=1

[Mi,j −Qi,j(li+ rj)]
+ ∀j ∈ [m].

(18)

Our algorithm iteratively updates the solution of l,r to (18) reducing the total additive approxima-

tion error in every such iteration. Specifically, we look at each separate equation in (18) and write

their approximation errors in two vectors δ
L
∈Rn,δ

R
∈Rm.

δ
L
[i]

def
= li−

m∑
j=1

[Mi,j −Qi,j(li+ rj)]
+

δ
R
[j]

def
= rj −

n∑
i=1

[Mi,j −Qi,j(li+ rj)]
+
. (19)

The update rule for l,r in our iterative procedure is quite simple: we choose one of l or r vectors with

the larger L1-norm error in (19) and then correct this vector by subtracting half of its error vector.

The description of our update rule for l,r is summarized in Algorithm 1 below. The initialization

of l and r vectors can be arbitrary, e.g., one can set both l,r to be 0-vectors.

Algorithm 1 Iterative update algorithm solving system of equations (18).
Input: Matrices (Mi,j,Qi,j)i,j∈[n]×[m] of non negative real numbers, error ε > 0.

Output: Vectors l,r solving (18) up to total additive error ε.

1: repeat

2: if ‖δ
L
‖
1
≥ ‖δ

R
‖
1
then

3: update vector l←
(
l− 1

2
· δ
L

)
4: else

5: update vector r←
(
r− 1

2
· δ
R

)
6: end if

7: Update δ
L
,δ
R
according to (19) with new l,r.

8: until ‖δ
L
‖
1
+ ‖δ

R
‖
1
≤ ε

Theorem 2. Algorithm 1 terminates in O
(
log(ε−1)+ log

(∑
i,jMi,j

))
many steps. Moreover,

the obtained solution is within O (ε) L1-distance to an exact solution of (18) and approximates each

equality in (18) up to O(ε) additive error.
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Proof. First, we show that our algorithm decreases the total L1-norm of the combined error

‖δ
L
‖
1
+ ‖δ

R
‖
1
in all iterations and thus converges to the solution of (18). Specifically, we show a

constant fraction decrement in L1-norm of the total error in each iteration.

Without loss of generality, let us assume that ‖δ
L
‖
1
≥ ‖δ

R
‖
1
in a given iteration. Thus we update

l vector to a new value l̂
def
= l− 1

2
· δ
L
in this iteration with the respective new errors δ̂

L
(̂l,r), δ̂

R
(̂l,r)

given by formula (19) for the updated l← l̂,r← r vectors. Let us bound first the decrease in the

L1-norm of the error
∥∥∥δ̂L∥∥∥

1
compared to its previous value

∥∥∥δL∥∥∥
1
.

δ̂
L
[i] = l̂i−

m∑
j=1

[
Mi,j −Qi,j

(
l̂i+ rj

)]+
= li−

1

2
δ
L
[i]−

m∑
j=1

[
Mi,j −Qi,j

(
li−

1

2
δ
L
[i] + rj

)]+
= δ

L
[i]− 1

2
δ
L
[i]−

m∑
j=1

([
Mi,j −Qi,j

(
li−

1

2
δ
L
[i] + rj

)]+
−
[
Mi,j −Qi,j

(
li+ rj

)]+)
,

where to get the last equality we simply plugged in the definition of δ
L
[i] from (19). We let

di,j
def
=

[
Mi,j −Qi,j

(
li−

1

2
δ
L
[i] + rj

)]+
−
[
Mi,j −Qi,j

(
li+ rj

)]+
(20)

Hence, δ̂
L
[i] = δ

L
[i]− 1

2
δ
L
[i]−

∑m

j=1 di,j for every i∈ [n]. We notice that di,j =
[
Ai,j +

1
2
Qi,j · δL [i]

]+−
[Ai,j]

+
, where Ai,j

def
= Mi,j − Qi,j (li+ rj) as per our definition of matrix A. Now, the function

[·]+ satisfies the following two simple properties: (i) [x+ y]
+ − [x]

+ has the same sign as y; (ii)∣∣∣[x+ y]
+− [x]

+
∣∣∣≤ ∣∣∣y∣∣∣ for any real numbers x, y. Thus all di,j for every j ∈ [m] have the same sign

as δ
L
[i] (property (i) for Ai,j and 1

2
Qi,j · δL [i]). Moreover, by the second property∣∣∣∣∣

m∑
j=1

di,j

∣∣∣∣∣=
m∑
j=1

∣∣∣∣di,j∣∣∣∣≤ m∑
j=1

∣∣∣∣12Qi,j · δL [i]
∣∣∣∣≤ 1

2

∣∣∣∣δL [i]∣∣∣∣ ,
where the last inequality holds since

∑
jQi,j ≤ 1 as the sum of the i-th row entries in the matching

probability matrix Q. Therefore, we have∣∣∣δ̂L [i]∣∣∣=
∣∣∣∣∣δL [i]− 1

2
δ
L
[i]−

m∑
j=1

di,j

∣∣∣∣∣= ∣∣∣δL [i]∣∣∣−
(
1

2

∣∣∣δL [i]∣∣∣+ m∑
j=1

∣∣∣di,j∣∣∣) .
We obtain a bound on the decrease of L1-norm of δ̂

L
by adding previous equations over all i∈ [n].∥∥∥δ̂L∥∥∥

1
−
∥∥∥δL∥∥∥

1
=

n∑
i=1

(∣∣∣δ̂L [i]∣∣∣− ∣∣∣δL [i]∣∣∣)=− n∑
i=1

1

2

∣∣∣δL [i]∣∣∣− n∑
i=1

m∑
j=1

∣∣∣di,j∣∣∣ . (21)

Next we bound the increase in the L1-norm of error δ̂
R
compared to

∥∥∥δR∥∥∥
1
. We note that

δ̂
R
[j] = rj −

n∑
i=1

[
Mi,j −Qi,j

(
l̂i+ rj

)]+
= rj −

n∑
i=1

[
Mi,j −Qi,j

(
li−

1

2
δ
L
[i] + rj

)]+
= δ

R
[j]−

n∑
i=1

([
Mi,j −Qi,j

(
li−

1

2
δ
L
[i] + rj

)]+
−
[
Mi,j −Qi,j

(
li+ rj

)]+)
,
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for every j ∈ [m]. Thus δ̂
R
[j] = δ

R
[j]−

∑n

i=1 di,j and we get∥∥∥δ̂R∥∥∥
1
−
∥∥∥δR∥∥∥

1
=

m∑
j=1

(∣∣∣δ̂R [j]∣∣∣− ∣∣∣δR [j]∣∣∣)= m∑
j=1

(∣∣∣∣∣δR [j]−
n∑
i=1

di,j

∣∣∣∣∣− ∣∣∣δR [j]∣∣∣
)
≤

m∑
j=1

n∑
i=1

∣∣∣di,j∣∣∣ . (22)

Finally, we combine bounds (21) and (22) to show constant factor drop in L1-norm of errors δ̂
L
, δ̂
R
.∥∥∥δ̂L∥∥∥

1
+
∥∥∥δ̂R∥∥∥

1
−
∥∥∥δL∥∥∥

1
−
∥∥∥δR∥∥∥

1
=
(∥∥∥δ̂L∥∥∥

1
−
∥∥∥δL∥∥∥

1

)
+
(∥∥∥δ̂R∥∥∥

1
−
∥∥∥δR∥∥∥

1

)
≤−

∑
i

1

2

∣∣∣δL [i]∣∣∣−∑
i,j

∣∣∣di,j∣∣∣+∑
i,j

∣∣∣di,j∣∣∣=−1

2

∥∥∥δL∥∥∥
1
≤−1

4

(∥∥∥δL∥∥∥
1
+
∥∥∥δR∥∥∥

1

)
,

where the last inequality holds because we assumed ‖δ
L
‖
1
≥ ‖δ

R
‖
1
. That means that the L1-norm

of the combined error decreases by a factor of 3
4
in every round and after t steps the L1-norm of the

combined error (δ
L
(t),δ

R
(t)) will be ‖δ

L
(t)‖

1
+‖δ

R
(t)‖

1
≤ ( 3

4
)t(‖δ

L
(0)‖

1
+‖δ

R
(0)‖

1
), where ‖δ

L
(0)‖

1
=∑n

i=1

∑m

j=1Mi,j = ‖δR(0)‖1. Thus Algorithm 1 terminates in O
(
log(ε−1)+ log

(∑
i,jMi,j

))
steps.

Furthermore, if we let the Algorithm 1 to continue indefinitely, it will produce a sequence of states

st
def
= (l(t),r(t)) ∈Rn+m for each iteration t that converges to an exact solution of (18) as t→+∞.

Indeed, we can show that st is a Cauchy sequence, i.e., for any t2 > t1 ≥ T we have

‖st2 − st1‖1 ≤
+∞∑
t=T

‖st− st+1‖1 ≤
+∞∑
t=T

(‖δ
L
(t)‖

1

2
+
‖δ
R
(t)‖

1

2

)
≤

+∞∑
t=T

ε

2
·
(
3

4

)t−T
=O (ε) ,

since ‖st− st+1‖1 =
1
2
max

(
‖δ
L
(t)‖

1
,‖δ

R
(t)‖

1

)
for any t and ‖δ

L
(t)‖

1
+‖δ

R
(t)‖

1
≤ ( 3

4
)t−T (‖δ

L
(T )‖

1
+

‖δ
R
(T )‖

1
)≤ ( 3

4
)t−T · ε for any t≥ T . As Rn+m is a complete space, the Cauchy sequence (st)

∞
t=0 has

a limit s ∈Rn+m which must be an exact solution to (18) as the combined error (δ
L
(t),δ

R
(t)) goes

to 0 with t→+∞. The last equation also shows that the result sT = (l(T ),r(T )) of Algorithm 1 is

within O (ε) distance from the exact solution s. �

Influence of numerical errors. We showed in section 3.3 the existence of vertex prices l,r

and presented an efficient algorithm that computes these prices up to O(ε) error. Note that matrices

M and Q are not given precisely due to the estimation error in the Monte Carlo simulations (similar

to the computation of the optimum in [27],[19],[20]). Thus it is important to understand how this

computation and estimation errors affect approximation guarantees of the respective vertex additive

policy V-add(l,r).

Suppose that our estimation of the matrices M, Q, and numerical solution to (16) have error

of order O(ε) per every matrix and vector entry. Following prior work, we can assume that all the

values are normalized to be in [0,1], i.e., the entries of the matrices M,Q lie in [0,1]. We claim that

these numerical errors translate into O(poly (ε,n,m)) additive error for the vertex additive policy.

Theorem 3. Suppose we have sample access to the distribution of edge values, then for any

δ > 0 we can compute vertex prices l,r in poly (1/δ,n,m) time such that V-add(l,r)≥ opt
3
− δ.
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Proof. All the derivations up to equation (15) are done for the arbitrary price vectors l and r,

regardless of how we compute these vertex prices. We can assume that the Algorithm 1 receives

imprecise estimations of M̃, Q̃ and then gets approximate solution to (16) which has O(ε) error in

each equality of (16). I.e., Algorithm 1 finds prices L̃, R̃ satisfying
[
M̃− L̃ · Q̃− Q̃ · R̃

]+
·1

R
− L̃ ·1

L
=O(ε)

1>
L
·
[
M̃− L̃ · Q̃− Q̃ · R̃

]+
−1>

R
· R̃=O(ε),

where O(ε) denotes a vector with every entry of order O(ε). We can assume that the prices L̃, R̃

also lie in [0,1]. If we substitute M̃, Q̃ with the correct estimates M,Q we get
[
M− L̃ ·Q−Q · R̃

]+
·1

R
− L̃ ·1

L
= n ·m ·O(ε)

1>
L
·
[
M− L̃ ·Q−Q · R̃

]+
−1>

R
· R̃= n ·m ·O(ε),

Let Ã+ def
=
[
M− L̃ ·Q−Q · R̃

]+
. Then we can write similar derivation to (17) and keep track of the

errors.

3 · (14)≥ 3 min
α∈[0,1]n,β∈[0,1]m

(
1>
L
· Ã+ ·1

R
−α> ·

[
Ã+ ·1

R
− L̃ ·1

L

]
−
[
1>
L
· Ã+−1>

R
· R̃
]
·β
)

= 3 ·1>
L
· Ã+ ·1

R
−max

α,β

(
α> ·nm ·O(ε)+nm ·O(ε)

> ·β
)

≥ 1>
L
· Ã+ ·1

R
+1>

L
· L̃ ·1

L
+1>

R
· R̃ ·1

R
− 3nm · (n+m) ·O(ε)

≥ 1>
L
· (Ã+ + L̃ ·Q+Q · R̃) ·1

R
− poly (n,m)O(ε)≥ opt− poly (n,m)O(ε).

By setting ε to be δ/poly(n,m) we conclude the proof of the theorem. �

4. Lower Bound In this section we prove a lower bound of 2.25. We construct a sequence

of bipartite graphs Gn(L,R,E) with L = R = [3n] such that the ratio between offline and online

optimum converges to 2.25 as n goes to infinity. Edges of the graph Gn arrive in three consecutive

batches: first arrive edges of E1, then E2, then E3. The distributions of the edge values in E1,E2,

and E3 are as follows.

E1 = {(i, i+n)|i∈ [n]}∪ {(j+n, j)|j ∈ [n]} ve =
1/2

E2 = {(i, i+2n)|i∈ [n]}∪ {(j+2n, j)|j ∈ [n]} {Pr
[
ve =

3/4
]
= 0.5, Pr [ve = 0] = 0.5}

E3 = {(i, j)|i, j ∈ [n]} {Pr [ve = n] = 1/n2 , Pr [ve = 0] = 1− 1/n2}

The idea is that the online algorithm needs to decide whether to take edges with guaranteed low

value of 1/2 from E1 without seeing the realization of the future edges, then the online algorithm

receives middle value edges ve = 3/4 from E2 without knowing which large value rare edges ve = n
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from E3 will arrive at the end. The optimum offline solution should take as many large edges from

E3 with ve = n as possible, then it matches each edge from E2 with ve = 3/4 (if i∈ [n] or j ∈ [n] was

not covered by an edge from E3), and finally match all unmatched vertices i, j ∈ [n] using low value

edges in E1.

Before going into technical details of the analysis, let us first give a small warm up example with a

weaker lower bound of 2.11 that illustrates the key features of our more general asymptotic example.

Example 1. Consider a bipartite graph with the left part L = {1,2,3} and the right part

R= {a, b, c}. The edges (1, c) and (3, a) arrive first, both having deterministic value of 1. After that

edges (1, b) and (2, a) arrive, each edge having higher value of M = 1.5 with probability 0.5 and

value 0 otherwise ((1, b) arrives before (2, a)). Finally, edge (1, a) arrives having a large value 1/ε

with small probability 2ε and value 0 otherwise (we think of ε being arbitrary small number).

Figure 1. Example that shows a lower bound of 2.11.

The best the online algorithm can do is to skip edges (1, c) and (3, a) and then look at the value

of the edge (1, b). If v(1, b) = 1.5, then the algorithm takes the edge (1, b) and the next edge (2, a)

regardless of its value; if v(1, b) = 0 the algorithm skips both edges (1, b), (2, a), and takes the edge

(1, a). The expected value obtained by such online policy is Pr[v(1, b) = 1.5] · (1.5 +Pr[v(2, a) =

1.5] · 1.5) + Pr[v(1, b) = 0] · Pr[v(1, a) = 1/ε] · 1/ε = 0.5 · (1.5 + 1.5 · 0.5) + 0.5 · 2ε · 1/ε = 2.125.

This is indeed the best policy, because if the algorithm decides to take any of the (1, c) and (3, a)

edges, then it would better take both of them with the total value of 2 < 2.125 (after that the

algorithm can only hope to get value M = 1.5 for the remaining edge with probability 0.5, i.e.,

expected value is 0.75< 1). If the algorithm passes on the deterministic edges and also decides to

pass on the middle value edges (1, b) and (2, a), then its expected gain comes only from the last

edge Pr[v(1, a) = 1/ε] · 1/ε= 2< 2.125. Now, the expected value of the optimal matching is opt=

Pr[v(1, a) = 1/ε] · 1/ε+Pr[v(1, a) = 0] · (Pr[v(1, b) = 1.5] · 1.5 +Pr[v(1, b) = 0] · 1 +Pr[v(2, a) =

1.5] · 1.5+Pr[v(2, a) = 0] · 1) = 4.5. This gives us a lower bound of 4.5/2.125 = 2.117 for the above

simple example with only 5 edges.

We use a similar although more involved argument to obtain our stronger lower bound of 2.25.
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Theorem 4. For any ε > 0 there is an instance such that no online algorithm has competitive

ratio better than 2.25− ε against the prophet.

Proof We begin by first writing a lower bound on the expected offline optimum opt.

opt= n
∑
i,j∈[n]

Pr [(i, j)∈ opt(v)]+
∑
i∈[n]

(
3

4
Pr [(i, i+2n)∈ opt(v)]+ 1

2
Pr [(i, i+n)∈ opt(v)]

)
+
∑
j∈[n]

(
3

4
Pr [(j+2n, j)∈ opt(v)]+ 1

2
Pr [(j+n, j)∈ opt(v)]

)
(23)

For the first term corresponding to the large edges e∈E3 in opt(v) we have

n
∑
i,j∈[n]

Pr [(i, j)∈ opt(v)]≥ n
∑
i,j

Pr
[
v(i,j) = n

]
·Pr [∀e∈E3 s.t. e 6= (i, j), e∩ (i, j) 6= ∅ : ve = 0]

≥ n ·n2 · 1
n2
·
(
1− 2n− 2

n2

)
= n−O(1), (24)

where the first inequality is due to the fact that opt(v) must include every large edge v(i,j) = n that

does not share a vertex i or j with any other large edge ve = n; to get the second inequality we

apply union bound to the edges e∈E3 that share a vertex with (i, j). For the second term we get∑
i∈[n]

(
3

4
Pr [(i, i+2n)∈ opt(v)]+ 1

2
Pr [(i, i+n)∈ opt(v)]

)
=
∑
i∈[n]

Pr [∀j ∈ [n] (i, j) /∈ opt(v)] ·(
3

4
Pr

[
v(i,i+2n) =

3

4

]
+

1

2
Pr
[
v(i,i+2n) = 0

])
≥ n ·

(
1− n

n2

)
·
(
3

4
· 1
2
+

1

2
· 1
2

)
=

5

8
n−O(1), (25)

where the first equality holds, as the prophet should take (i, i+ 2n) with v(i,i+2n) =
3
4
if i is not

covered by the edges of E3 in opt(v); to get the first inequality we use union bound for n edges

(i, k)∈E3. We get the same bound as (25) for the third term in (23). We combine lower bound (24),

and two lower bounds (25) to get

opt≥ 9

4
n−O(1) (26)

Now, we derive an upper bound on the expected payoff of any online algorithm A. First, notice
that there is no randomness in the values of the edges e ∈ E1. Thus we can assume without loss

of generality that A chooses some fixed number of edges from E1. Then the algorithm picks some

random number of edges Y from the second group E2, and finally takes a random number X of

edges from the third group E3:

z
def
= |{e∈E1|e /∈A(v)}| Y def

= |{e∈E2|e∈A(v)}| X def
= |{e∈E3|e∈A(v)}|

Then the expected payoff of the algorithm is as follows

E

 ∑
e∈A(v)

ve

=
1

2
· (2n− z)+ 3

4
·E [Y] +n ·E [X] . (27)
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First, we get an upper bound on E[X] via Y and z. Indeed, if z
L
, z
R
are the number of vertices not

covered by A in the left i∈ [n] and the right j ∈ [n] sides of Gn after arrival of E1 edges and Y
L
,Y

R

are the number of E2 edges taken by A of the form (i, i+2n), (j+2n, j), respectively, then

E [X]≤
∑
i,j∈[n]

Pr
[
v(i,j) = n

]
· I(i, j not covered) =

1

n2
· (z

L
−Y

L
) (z

R
−Y

R
)≤
(
z−Y
2n

)2

,

where the last inequality holds since z = z
L
+ z

R
and Y = Y

L
+Y

R
. We continue with the upper

bound on the expected payoff (27) as follows

E

 ∑
e∈A(v)

ve

≤ n− z
2
+E

[
3

4
Y+n

(
z−Y
2n

)2
]

= n
2n∑
y=0

(
1− 1

2

z

n
+

3

4

y

n
+
z2− 2yz+ y2

4n2

)
Pr [Y= y] = n

2n∑
y=0

f
(y
n
,
z

n

)
Pr [Y= y] , (28)

where f(β,γ) def
= 1− γ

2
+ 3β

4
+ (γ−β)2

4
for γ = z

n
and β = y

n
with 0≤ β ≤ γ ≤ 2, as 0≤Y≤ z ≤ 2n. We

observe that the random variable Y is stochastically dominated by Binomial( 1
2
, z), since A should

not take the edges e ∈ E2 with ve = 0 (A may or may not take ve = 3
4
). Therefore, we have by

Chebyshev’s inequality

Pr

[
Y
n
≥ z

2n
+
n3/4

n

]
≤Pry∼Bernoulli( 12 ,z)

[
y

n
≥ E[y]

n
+
n3/4

n

]
= o(1) as n→+∞

We note that f(β,γ)< 3 is bounded6 for all values of z and y in the support of Y. We plug this and

Chebyshev’s bound in (28) and get

E

 ∑
e∈A(v)

ve

≤ n z
2+n

3/4∑
y=0

f
(y
n
,
z

n

)
Pr [Y= y] +n · 3 · o(1). (29)

We have y
n
− z

2n
= β− γ

2
≤ o(1) for all y in the summation range of RHS(29) (y≤ z

2
+n3/4). One can

rewrite f(β,γ) as follows

f(β,γ) = 1+
(
β− γ

2

)
︸ ︷︷ ︸
≤o(1)

·
(
3

8
(2− γ)+ β

4

)
︸ ︷︷ ︸

1≥ also ≥0

− γ

16
(2− γ)︸ ︷︷ ︸
≥0

where γ ≤ 2.

We have f(β,γ) = 1+ o(1) for any β = y
n
≤ γ

2
+n−1/4 where y≤ z

2
+n3/4. Thus (29) implies

E

 ∑
e∈A(v)

ve

≤ n(1+ o(1)
)
Pr
[
Y≤ z/2+n3/4

]
+n · o(1)≤ n

(
1+ o(1)

)
.

Therefore, any online algorithm A cannot achieve better guarantee than 9
4
− o(1) fraction of the

prophet (see (26)) on the series of graphs Gn as n goes to infinity. This gives us the desired lower

bound. �

6 Indeed f(β,γ) = 1+ β
4
+ (γ−β)2

4
− γ−β

2
≤ 1+ 1

2
+ 22

4
− 0< 3 for 0≤ β ≤ γ ≤ 2.
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