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We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs,
under two well-studied arrival models, namely edge arrival and vertex arrival. The weights of the edges are
drawn from a priori known probability distribution. Under edge arrival, the weight of each edge is revealed
upon arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival,
the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and
the algorithm decides which of these edges, if any, to include in the matching. To study these settings,
we introduce a novel uni�ed framework of batched-prophet inequalities that captures online settings where
elements arrive in batches. Our algorithms rely on the construction of suitable online contention resolution
scheme (OCRS). We �rst extend the framework of OCRS to batched-OCRS, we then establish a reduction
from batched-prophet inequality to batched-OCRS, and �nally we construct batched-OCRSs with selectable
ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of
the art for the corresponding settings. For vertex arrival, our result is tight. Interestingly, a pricing-based
prophet inequality with comparable competitive ratios is unknown.

Key words : prophet inequality; online matching; online stochastic matching; online contention resolution
scheme
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1. Introduction Online matching is a central problem in the area of online algorithms, and is
extensively used in economics to model rapidly appearing online markets. Some prominent applica-
tions include matching platforms for ride sharing, healthcare (e.g., kidney exchange programs), job
search, dating, and internet advertising [44, 15, 8, 43]. As many of the online platforms accumulate
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huge amounts of statistical data and use it heavily in their online decision making, it is natural
to study online matching in Bayesian settings; i.e., assuming a priori knowledge of the probability
distribution from which values are drawn.
The study of optimal (or nearly optimal) online decisions in Bayesian settings has been extensively

studied within the prophet inequality paradigm. Prophet inequality appeared �rst as a fundamental
result in optimal stopping theory [38, 39, 47], and was later extended to online selection problems
under more complex feasibility constraints, such as uniform matroids [29], general matroids [37],
intersection of matroids [37], general downward-closed feasibility constraints [45], and most relevant
to our present work: matching in graphs [3, 21, 26].
In a prophet matching problem in bipartite graphs with one-sided vertex arrival, edge weights are

drawn from known probability distributions, and upon the arrival of a vertex v, the weights of all
edges from v to its neighbors are revealed. An immediate and irrevocable decision should be made
by the online algorithm regarding whether to match v and to which vertex.
The performance of an online algorithm is measured by its competitive ratio, namely the ratio

between the expected total weight of the selected matching and the expected total weight of the
optimal matching.
For one-sided vertex arrival in bipartite graphs, Feldman et al. [21] devised a 1{2-competitive

algorithm, for an adversarial arrival order, using a pricing-based approach.1 In the edge arrival
model, edges arrive in an adversarial order, and edge weights are revealed upon arrival. Clearly,
the edge arrival model is harder than the vertex arrival model, since edge weights are revealed
one by one, whereas in the vertex arrival model, some edge weights are revealed simultaneously.
Indeed, Gravin and Wang [27] showed that no prophet algorithm for this setting achieves a better
competitive ratio than 4{9, even in bipartite graphs (this upper bound was later improved to 3{7
by Alon et al. [4]). On the positive side, Gravin and Wang [27] devised a pricing/threshold-based
algorithm that gives a competitive ratio of 1{3 for matching in bipartite graphs.
The aforementioned studies focus on matching in bipartite graphs, and under vertex arrival they

further focus on one-sided arrival. In reality, many matching applications cannot be captured by
these models. For example, matching in ride-sharing platforms is better captured by two-sided
bipartite graphs, where both drivers and passengers arrive dynamically. This is also the case for
buyers and sellers in e-commerce applications, ad slots and advertisers in ad auctions, and jobs
and workers in online labor markets. Moreover, other applications cannot be captured by bipartite
matching at all, and are better captured by matching in general graphs. This is the case, for example,
in exchange platforms such as kidney exchange, where every vertex corresponds to a patient-donor
pair, and all vertices play the same role, with no distinction to �left" and �right" sets.
A natural problem arises: Do the competitive ratios obtained for prophet matching in bipartite

graphs extend to general graphs? This is the problem we study in this work.
Interestingly, a similar evolution took place with respect to the seminal paper of Karp et al.

[33]. The original paper introduced the problem of online matching in the fully adversarial model,
and studies it under one-sided vertex arrival in bipartite graphs. Follow-up work by Gamlath et al.
[25], Wang and Wong [48] consider this problem under more general arrival models, including edge
arrival in bipartite and general graphs, and vertex arrival under both two-sided arrival in bipartite
graphs and general graphs. By analogy, our work introduces the same extensions with respect to
matching in prophet inequality setting (e.g., Bayesian).

1.1. Our Contribution Table 1 presents our results in the context of previous results. The
top row corresponds to unweighted graphs under the fully adversarial model (i.e., no Bayesian
information). The bottom row corresponds to weighted graphs under the Bayesian model (i.e., our
setting). The left and right columns correspond to the edge- and vertex-arrival models, respectively.

1 For the case of known or random arrival order, a 1{2-competitive algorithm has been devised by [3].
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Edge Arrival Vertex Arrival

Bipartite
M
Any graphs

One Sided
(Bipartite graphs)

Two Sided
(Bipartite)

M
Any graphs

Worst-case
(unweighted)

1
2
(tight)

bipartite & any graphs [25]
1� 1

e
(tight) [33]

¥ 1
2
�Ωp1q(any graph) [25]

¤ 0.591(bipartite graphs) [9]

Bayesian
(weighted)

¥ 1
3
(bipartite graphs) [27]

¤ 4
9
(bipartite graphs) [27]

¥ 0.337 (any graph)
(Theorem 4)

1
2
(tight) [21]

¥ 1
2
(any graph)

(Theorem 2)

¤ 1
2
(tight) one sided arrival

bipartite graphs

Table 1. Competitive ratios for online matching: previous and new results. New results are indicated in bold.

The right column is further divided to one-sided arrival in bipartite graphs and more general models
(i.e., 2-sided arrival in bipartite graphs, and general arrival in general graphs).

Matching with vertex arrival. We devise a 1
2
-competitive prophet inequality for general

(not necessarily bipartite) graphs. This result is tight (a matching upper bound is derived from the
classical prophet inequality problem). Moreover, our competitive ratio holds also with respect to
the stronger benchmark of the optimal fractional matching. Unlike bipartite graphs, the optimal
fractional matching in general graphs may have a strictly higher weight than any integral matching.
An interesting implication of this result is that in the Bayesian setting there is no gap between

the competitive ratio that can be obtained under the 1-sided and 2-sided vertex arrival models in
bipartite graphs, or even under vertex arrival in general graphs. This is in contrast to the non-
Bayesian (worst case) online model, where there is a gap between 1-sided and 2-sided vertex arrivals
(see Table 1).

Matching with edge arrival. We construct a 0.337-competitive prophet inequality for gen-
eral (not necessarily bipartite) graphs, under the edge arrival model. This improves upon the
1{3-competitive prophet inequality constructed by Gravin and Wang [27] and Kleinberg and Wein-
berg [37]. While these previous studies take a pricing/threshold-based approach, we use a di�erent
approach, namely OCRS (see details below). We show that the 1

3
-competitive ratio for bipartite

graphs can be obtained by a simple OCRS construction. Moreover, our OCRS construction gen-
eralizes to general graphs2. We further improve the competitive ratio to 0.337 by constructing a
better OCRS, which requires more subtle analysis. These results hold against the even stronger
benchmark of the ex-ante optimal solution that satis�es fractional matching constraints (similar to
the observation in Lee and Singla [41]). Additionally, these results apply to multigraphs as well, see
Appendix G.

1.2. Our Techniques To study prophet inequality for matching, we introduce a uni�ed frame-
work of batched-prophet inequalities that captures online settings where elements arrive in batches

rather than one by one. For example, in the vertex arrival model, upon the arrival of a vertex v,
the weights of all edges from v to previous vertices are revealed simultaneously. Unlike the classical
setting, where the decision in every step is binary (accept/reject), in batched settings, a complex
online decision should be made in each step, based on the corresponding feasibility constraints.
For example, in the matching example, the online algorithm should decide whether to match the
arriving vertex v to a previous vertex, and if so, to which one.

2Note, however, that unlike Gravin and Wang [27], the OCRS-based algorithm is adaptive.
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Unlike [37, 27, 21], who take a �pricing/charging� approach, our solution takes a di�erent approach,
related to a technique known as Online Contention Resolution Schemes (OCRS) [11, 23], which we
extend to batched settings. Our techniques proceed in three steps: (i) we extend the framework of
OCRS to batched-OCRS. (ii) we establish a reduction from batched-prophet inequality to batched-
OCRS (where selectable ratios of OCRS translate to prophet inequalities with identical competitive
ratios). (iii) we construct batched-OCRSs with good selectable ratios. In particular, we construct
batched-OCRS with selectable ratios 0.337 and 0.5 for edge- and vertex-arrival models, respectively.
Contention Resolution Schemes (CRS) were introduced by Chekuri et al. [11] as a powerful round-

ing technique in the context of submodular maximization. The CRS framework was extended to
the OCRS framework for online stochastic selection problems by Feldman et al. [23], who provided
OCRSs for di�erent problems, including intersections of matroids and matchings, and showed appli-
cability to prophet inequality [23, 41]. Speci�cally, for the matching feasibility constraint, Feldman
et al. [23] constructed a 1

2e
-OCRS that implies a 1

2e
-competitive algorithm for prophet matching

under edge arrival.
We devise a general reduction from batched prophet inequality to batched-OCRS for any

downward-closed feasibility constraint. This general reduction implies that to get prophet inequal-
ities with a certain competitive ratio, it su�ces to construct an OCRS with the same selectable
ratio. Given this reduction, it su�ces to construct batched OCRS for our matching problems. We
do so for both the edge- and vertex-arrival models. (While the batched setting captures both arrival
models, for the edge arrival model the standard OCRS su�ces.)
The OCRS approach is not as common as the pricing approach in prophet inequality settings.

We note that the earlier algorithms of Chawla et al. [10] and Alaei [2], when applied to the classic
prophet inequality setting, become a simple 1

2
-competitive algorithm that is indeed a 1

2
-OCRS. These

algorithms also appear to be closer in spirit to our OCRS approach than to the more recent papers
on prophet inequality (e.g., [37, 21, 27, 16, 42, 18]). Speci�cally, when restricted to the setting of
selecting one item, our algorithm is the same as Alaei's algorithm [2].
One of the reasons that OCRSs are not as prevalent in prophet inequality settings under more

general feasibility constraints is that the formal de�nition of OCRS is not speci�cally tailored for
prophet inequalities. As a result, the approximation factors that are obtained by the OCRS approach
are not as tight. For example, the original OCRS introduced by Feldman et al. [23] for matching
feasibility constraint achieves a competitive ratio of 1

2e
, whereas even a non-adaptive pricing-based

algorithm achieves the much better ratio of 1
3
[27].

Indeed, these OCRSs are usually designed to work against a strong almighty adversary, who
controls the arrival order of the elements and knows in advance the realization of the instance and
the random bits of the algorithm. The OCRSs we construct in this work are better tailored to the
prophet inequality setting as they are designed against a weaker oblivious adversary, who can select
an arbitrary arrival order, but does not observe the algorithm's decisions and the realization of the
instance.
Our 1

3
- and 1

2
-selectable OCRSs for the edge- and vertex arrival models, respectively, are surpris-

ingly simple and intuitive. And yet, the latter OCRS already gives a tight competitive ratio for the
vertex arrival model. Even more surprisingly, at the time of writing this paper, no pricing-based
approach is known to match the 1

2
-competitive guarantee attainable by the OCRS for the vertex-

arrival model. Moreover, several natural attempts of generalizing the pricing scheme in Feldman
et al. [21] fail miserably, even for bipartite graphs. For example, one natural generalization would
be to set the price on a new vertex v to be half of the expected contribution of the future edges
incident to v to the optimum matching. As it turns out, this pricing scheme achieves a competitive
ratio as small as 1

4
. This is demonstrated in Appendix F. We note, however, that formulating a

general OCRS framework for batched arrivals of elements is not as trivial as it might seem at a �rst
glance. We give an example in Appendix E illustrating why a simpler and apparently more natural
than ours extension of OCRS to the setting with batched arrivals can be problematic.
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On the other hand, the 1
3
-OCRS for the edge arrival model is based on a simple union bound

which still leaves some room for improvement. We improve the ratio of 1
3
to 0.337 by bounding the

negative correlation for any pair of events that vertex u and vertex v are matched at the arrival
time of edge puvq. This is the most technical part of the paper.

1.3. Related Work

Prophet inequality. Prophet inequality is highly relevant to the algorithmic mechanism design
literature. Hajiaghayi et al. [29] were the �rst to realize the applicability of the prophet inequality
framework within mechanism design applications. Later, Chawla et al. [10] applied the prophet
inequality framework to the design of sequential posted price mechanisms that give approximately
optimal revenue in a Bayesian multi-parameter unit-demand setting (BMUD). An important ingre-
dient in their result is the �rst constant competitive (speci�cally, 4

27
) prophet inequality for the

online weighted matching problem with edge arrival in a bipartite graph. Kleinberg and Weinberg
[37] introduced a general combinatorial prophet inequality for a broad class of Bayesian selection
problems, where the feasible set is represented as an intersection of k matroids. They found a 1

4k�2
-

competitive algorithm for this setting and showed that it can be used for the design of a truthful
mechanism in the BMUD setting with more general feasibility constraints. Alaei et al. [3] studied
the prophet matching problem for k-demand and budgeted buyers, in a setting that is equivalent
to 1-sided vertex arrival model with known arrival order. They provide 1� 1?

k�3
competitive ratio

for k-demand buyers, and 1� 1?
2πk

competitive ratio for budgeted buyers with values bounded by

1{k of the budget. For the case of k � 1, they achieve the same 1
2
competitive ratio as ours, albeit

in a more restricted setting, and using a di�erent algorithm.
A recent line of work has considered sample based variants of prophet inequalities, where the

distributions of the values are not given explicitly, and the challenge is to provide good competitive
ratios using a limited number of samples [6, 12, 13, 20, 46]. Another related line of work, initiated
in Kennedy [34, 35], Kertz [36], has considered multiple-choice prophet inequalities, and was later
extended to combinatorial settings such as matroid (and matroids intersection) (Kleinberg and
Weinberg [37], Azar et al. [6], polymatroids Dütting and Kleinberg [17]), and general downward
closed feasibility constrains (Rubinstein [45]).

Online/stochastic matching There is an extensive literature regarding online matching and
stochastic matching problems. Below we survey the studies that are most related to our work. Our
vertex arrival model restricted to the case of bipartite graphs captures the two-sided vertex arrival
model studied by [48, 25], but within a Bayesian setting. For the online setting, Wang and Wong
[48] provided a 0.526-competitive fractional algorithm and Gamlath et al. [25] provided a 1

2
�Ωp1q-

competitive integral algorithm. Furthermore, Gamlath et al. [25] showed that for the case of bipartite
graphs with edge arrivals, no online algorithm performs better than the straightforward greedy
algorithm, which is 1

2
-competitive. Another extension of the 1-sided bipartite matching model, the

fully online matching model has been studied by Ashlagi et al. [5], Huang et al. [30, 31, 32], motivated
by ride sharing applications. This is a di�erent vertex arrival model in which all vertices from a
general graph arrive and depart online. It is possible to study the stochastic/prophet inequality
version of the fully online model, which we leave as an interesting future direction. Lee and Singla
[40] proposed the batch-arrival model for online matching and designed competitive algorithms that
beat the naïve greedy algorithm when there are constant number of batches.
Gravin et al. [26] studied the online stochastic matching problem with edge arrivals (a.k.a. the

unweighted version of the prophet inequality with edge arrivals in this paper) and achieved a 0.506-
competitive algorithm. The stochastic matching setting is also studied in the (o�ine) query-commit
framework. The input of this problem is an (unweighted) graph associated with the existence prob-
abilities of all edges. The algorithm can query the existence of the edges in any order. However, if
an edge exists, it has to be included into the solution. The Ranking algorithm by Karp et al. [33]
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induces an p1� 1
e
q-competitive algorithm for this problem on bipartite graphs. Costello et al. [14]

provided a 0.573- competitive algorithm on general graphs and proved a hardness of 0.898. Gamlath
et al. [24] provided a 1� 1

e
-competitive algorithm for the weighted version of this problem.

Online Contention Resolution Schemes (OCRS). Online contention resolution schemes
have also been studied in settings beyond worst case arrivals. Adamczyk and Wlodarczyk [1] con-
sidered the random order model and constructed 1

k�1
-OCRS for intersections of k matroids. Lee and

Singla [41] constructed optimal 1
2
-OCRS and p1� 1

e
q-OCRS for matroids with arbitrary order and

random order, respectively. O�ine contention resolution schemes for matching have also attracted
attention due to its applications in submodular maximization problems [11, 22, 7], and the con-
nection between the correlation gap and contention resolution schemes [28]. We refer the interested
readers to Bruggmann and Zenklusen [7] for a comprehensive recent survey on the topic.

1.4. Paper Roadmap In Section 2 we extend the OCRS and prophet inequality frameworks
to settings where elements arrive online in batches. We begin by introducing the general setting of
batched arrival. In Section 2.1 we extend the notion of OCRS to batched-OCRS. In Section 2.2 we
extend the notion of prophet inequality to batched prophet inequality. In Section 2.3 we establish
a reduction from batched prophet inequality to batched OCRS. In Sections 3 and 4 we construct
OCRSs for graph matching under the vertex- and edge-arrival models, respectively. Upper bounds
on the competitive ratios for the prophet inequality with edge arrivals are provided in Appendix D.
Section 5 concludes this paper with a list of open problems and future directions.

2. Model and Preliminaries: Batched Settings Let E be a set of elements, and let M be
a downward closed family of feasible subsets of E, i.e., if S PM, then S1 PM for any S1 � S. The
elements in E are partitioned into T disjoint sets (batches) B1, . . . ,BT that arrive online in the order
from batch B1 to batch BT . I.e., at time t, all elements of batch Bt appear simultaneously. The
partition of elements into the batches and their arrival order pBtqtPrT s should conform to a certain
structure formally speci�ed by a family of all feasible ordered partitions B of E.
Some examples of feasible ordered partitions include the following: (i) all batches in B are required

to be singletons, (ii) given a partial order π on E, a feasible ordered partition pBtqtPrT s PB is required
to have πpetq ¤ πpesq for any et PBt, es PBs where t  s, (iii) suppose the set of elements E consists
of the edges of a bipartite graph G� pL,R;Eq, and each batch Bt must contain all edges incident
to a vertex u PL.
We illustrate the main concepts in our setting with the following running example.

Example 1 (Tabular Feasibility). In a tabular feasibility setting, there exists a
table with n rows and m columns, and the set of elements is E � tpi, jq | i P rns, j P rmsu.
The collection of feasible sets is any set of elements that contains at most one element from
each row and at most one element from each column. The elements arrive in T � n batches.
For t � 1, . . . , n, batch t contains all elements in row t; i.e., Bt � tpt, jq | j P rmsu. The
algorithm does not know the arrival order of pBtqtPrT s. The partition family B of E can be
described as a collection of rows ptpi, jq | j P rmsuqiPrT s. Note that the structure of batches
in this example is equivalent to the structure of batches in example (iii) above of 1-sided
vertex arrival in complete bipartite graphs, and the feasibility constraints correspond to
bipartite graph matching.

2.1. Batched OCRS For a given family of feasible batches B, consider a sampling scheme

that selects a random subset R�E as follows: at time t, all elements of batch Bt arrive, of which
a random subset Rt � Bt is realized. The realized sets R1, . . . ,RT are mutually independent. R is

then de�ned as the random set R
def
��

�
tPrT sRt.
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Feldman et al. [23] introduce the notion of c-selectable online contention resolution scheme

(OCRS), as an online selection process that selects a feasible subset of E such that every realized
element e P R is selected with probability at least c, for the special case where every batch is a
singleton. We extend the de�nition of Feldman et al. [23] to batched OCRSs as follows.
Definition 1 (c-selectable batched OCRS). An online selection algorithm ALG is a

batched OCRS with respect to a sampling scheme R if it selects a set It �Rt at every time t such

that I
def
��

�
tPrT s It is feasible (i.e., I PM). It is called a c-selectable batched OCRS (or in short

c-batched-OCRS) if for every t P rT s, every realization S � Bt of Rt, and every element e P S, it
holds that:

Pr
I

�
e P It

�� Rt � S
�
¥ c. (1)

The algorithm ALG does not know the complete partition into batches and the arrival order of future
batches. It only knows the general structure B. Thus, at time t, ALG chooses It based on B1, . . . ,Bt,
and R1, . . . ,Rt.

Let us demonstrate the concepts above using our running example of tabular feasibility
(Example 1). Consider a sampling scheme R that selects one element from each batch
uniformly at random. The following is a 1{2-batched OCRS with respect to R (for the
case n ¤ m � ln 4): given the element sampled by Rt in round t, if it is feasible (given
previously chosen elements), then we choose it with probability pt �

1

2p1� 1
2m qt�1 (pt ¤ 1 by

the fact that n¤m � ln 4). We claim that for every t, the element sampled by Rt is chosen
with probability 1{2. We prove this by induction on t. For t � 1, any element in row 1
can be added to I and p1 � 1{2. For t¡ 1, any element in row t can be added to I with
probability p1� 1

2m
qt�1. Multiplying this probability by pt gives exactly 1{2. Thus, this is

a 1{2-batched OCRS.

2.2. Batched Prophet Inequality In batched prophet inequality, every element e PE has a

weight we. Let w
t def
�� pweqePBt , and w

def
�� pwtqtPrT s. Weights are unknown apriori, but for every t, wt

is independently drawn from a known (possibly correlated) distribution Ft, and w�F
def
��

±
tPrT sFt;

I.e., we allow dependency within batches, but not across batches. Let wpSq �
°

ePS we for any set
S �E. As standard, let F�t �

±
i�tFi. The particular partition of elements into batches and their

order are a priori unknown3, except, of course, that pBtqtPrT s must conform to the general structure
of pBtqtPrT s P B. All elements of a batch Bt and their weights wt are revealed to the algorithm at
time t. We assume that the arrival order of the batches is decided by an oblivious adversary, i.e.,
the adversary can select an arbitrary partition and order of arrival of the batches in B, but does
not see the realization of the weights we and the algorithm's decisions4. Let OPT be a function that
given weights w returns a feasible set of maximum weight (i.e., OPTpwq P argmaxSPMwpSq)5.
Definition 2 (c-batched-prophet inequality). A batched-prophet inequality algorithm

ALG is an online selection process that selects at time t a set It � Bt such that I
def
��

�
tPrT s It is

feasible (i.e., I PM). We say that ALG has competitive ratio c if

E
w,I

rwpIqs ¥ c �E
w
rwpOPTpwqqs .

3Note that F might impose some constraints on the partition into batches: elements whose weights are dependent
must belong to the same batch. No constraint is imposed on elements whose weights are independent and on the
order of batches.

4 The oblivious adversary is a standard assumption in the literature on online algorithms in stochastic settings.

5We assume that OPT is deterministic (if a given weight vector w induces multiple feasible sets of maximal weight,
OPTpwq returns one of them consistently).
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The batched prophet inequality setting corresponding to Example 1 is one where the
elements arrive in the same batch structure, but also have real-valued weights that are
drawn from known distributions. Say, in our running example wpi,jq � ξi � ξi,j, where ξi �
Uniformr0,1s and ξi,j �Uniformr0,100s. The weights wpi1,j1q and wpi2,j2q are independent
random variables for any i1 � i2.

2.3. Reduction: Prophet Inequality to OCRS We de�ne a random sampling scheme
Rpw,Fq for w�F as follows:

Definition 3 (Sampler). Let Rtpw
t,Fq

def
�� Bt XOPTpwt, rwptqq be the random subset of Bt

where rwptq �F�t are generated independently of w, and Rpw,Fq
def
��

�
tPrT sRtpw

t,Fq.
Note that:
1. The distribution of Rpw,Fq is a product distribution over the random variables Rtpw

t,Fq.
2. Since F is a product distribution, pwt, rwptqq �F.
3. @t P rT s, Rtpw

t,Fq �Rpw,FqXBt has the same distribution as OPTpwqXBt, where w�F.
4. @t P rT s, Rtpw

t,Fq PM, and OPTpwt, rwptqq PM. But, Rpw,Fq might not belong to M.
5. For every t P rT s,

E
w,R

�
wpRtpw

t,Fqq
�
�E

w
rwpOPTpwqXBtqs . (2)

In Example 1, the sampler de�ned in De�nition 3 observes the weights of the realized
batch at each time t P rT s, samples each ξi � Uniformr0,1s and ξi,j � Uniformr0,100s
for i � t and calculates the weights of all other elements wi,j � ξi � ξi,j, where i � t and
j P rms. The weights wt in each Bt are distributed as pξt � ξt,jqjPrms. Then, the sampler
�nds the maximum weight feasible set and selects in it the element (if it exists) from the
current batch Bt. For a random wt, the sampling scheme Rtpw

t,Fq picks a single element
pt, jq P Bt with probability minpm

n
,1q where j � Uniformrms. Thus we select in Rpw,Fq

one element from each row t independently and uniformly at random with probability
minpm

n
,1q. It is easy to see that Rpw,Fq satis�es all properties 1-5 from above.

Theorem 1 (reduction: c-batched prophet inequality to c-batched OCRS). For every

set B of feasible ordered partitions, given a c-batched OCRS for the sampling scheme Rpw,Fq with
w�F, there is a batched prophet inequality algorithm for w�F with competitive ratio c.

Proof. Consider the following online algorithm:

Algorithm 1 Reduction from c-batched prophet inequality to c-batched OCRS

1: for t P t1, ..., T u do
2: Let wt be the weights of elements in Bt

3: Resample the weights rwptq �F�t

4: Let Rt ÐOPTpwt, rwptqqXBt

5: It Ð c-OCRS(B1, . . . ,Bt,R1, . . . ,Rt) for the structure B of batches.
6: end for
7: Return I �

�
tPrT s It

Let I be the random set returned by Algorithm 1, and Rt (and resp. R�
�

tPrT sRt) be the sets
de�ned in step 4 of the algorithm. It holds that

E
w,R,I

rwpIqs �
¸
tPrT s

E
w,R,I

rwpItqs �
¸
tPrT s

¸
S�Bt

E
w,R,I

�
wpItq

��� Rt � S
�
Pr
w,R

rRt � Ss .
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Since It and w are independent given that Rt � S, we also have.

E
w,R,I

rwpIqs �
¸
tPrT s

¸
S�Bt

E
w,I

�¸
ePBt

we �Pr
I
re P Its

���� Rt � S

�
Pr

wt,Rt

rRt � Ss

(1)

¥
¸
tPrT s

¸
S�Bt

E
wt

�¸
ePS

we � c

���� Rt � S

�
Pr

wt,Rt

rRt � Ss

� c
¸
tPrT s

¸
S�Bt

E
w

�
wpSq

�� Rt � S
�
Pr
w,Rt

rRt � Ss

� c
¸
tPrT s

E
w,R

rwpRtqs
(2)
� c

¸
tPrT s

E
w
rwpOPTpwqXBtqs � c �E

w
rwpOPTpwqqs �

We note that our reduction is similar to the classical case in which elements arrive one by one.
However, the set of requirements from the sampling scheme is more demanding in the batched
setting. In particular, our sampling scheme needs to satisfy all 5 properties mentioned right after
De�nition 3.
The di�erence between the batched setting and the standard singleton setting can be best demon-

strated when using the ex-ante relaxation benchmark instead of the integral optimal solution (OPT)
benchmark. In the ex-ante relaxation case the sampling scheme in the batched setting would fail to
satisfy Property 4, as the ex-ante relaxation may select more than a single element within a batch
(whereas Property 4 requires the sampler to select a feasible set within each batch). Clearly, under
singleton arrivals, Property 4 is trivially satis�ed also in the ex-ante relaxation case.

3. A 1{2-Batched OCRS for Matching with Vertex Arrival Given a graph G� pV,Eq
(not necessarily bipartite), the elements of the prophet inequality setting are the edges e PE, and
the family of feasible sets M is given by all matchings in G, i.e., M �E is feasible i� e1X e2 �∅
for any e1, e2 PM .
In the vertex arrival model, the vertices arrive in an arbitrary unknown order σ: vσp1q, . . . , vσpnq,

where vσpiq is the vertex arriving at time i. Upon arrival of vertex vσpiq, the weights on the edges from
vσpiq to all previous vertices vσpjq, where j   i, are revealed to the algorithm. The online algorithm
must make an immediate and irrevocable decision whether to match vσpiq to some available vertex
vσpjq such that j   i (in which case vσpiq and vσpjq become unavailable), or leave vσpiq unmatched (in

which case vσpiq remains available for future matches). Let Bσ
i

def
�� tpvσpiqvσpjqq | j   iu. The set of

feasible ordered partitions for the vertex arrival model is

Bv.a. def
�� tpBσ

1 , . . . ,B
σ
|V |quσPSV

,

where SV is the set of permutations over V .
In what follows we construct a 1

2
-batched OCRS for the vertex arrival model. By the reduction

in Theorem 1, the constructed batched OCRS gives a batched prophet inequality with competitive
ratio 1{2 with respect to the optimal matching. The sampling scheme R (see De�nition 3) for the
vertex arrival batch structure is as follows.
Definition 4 (Sampler). For every vertex v arriving at time t, let Rv be an independent

random subset of Bσ
v generated by the sampling scheme (Rv �Bσ

v XOPTpwt, rwptqq, where wt are
the observed weights in the batch Bσ

v and rwptq � F�t are generated independently of w), and let
R�

�
v Rv.

For every edge puvq PE, let xuv
def
��Prrpuvq PRs.We write u  v if vertex u arrives before vertex

v in the vertex arrival order σ. In order to construct a 1
2
-batched OCRS for R, we �rst claim that

R satis�es the following two equations:¸
u

xuv ¤ 1 for every v P V (3)
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|Rv| ¤ 1 for every v P V and every realization of Rv (4)

R satis�es (3) since the probability that vertex v is matched in a maximum matching is at most

1. It also satis�es (4), since the sampler matches v to at most one vertex upon the arrival of vertex

v (i.e., selects at most one element).

With this, we are ready to present our main theorem for this section.

Theorem 2. R admits a 1{2-batched OCRS for the Bv.a. structure of batches.

Proof. Upon the arrival of a vertex v, we compute αupvq for every u  v as follows:

αupvq
def
��

1

2�
°

z v xuz

¤
1

2�
°

z xuz

(3)

¤ 1. (5)

Note that αupvq cannot be calculated before the arrival of v. We claim that the following algorithm

is a 1
2
-batched OCRS with respect to R:

Algorithm 2 1{2-batched OCRS for vertex arrival

1: for v P t1, ..., |V |u do
2: Calculate xuz �Prrpuzq PRs for all u, z   v and αupvq for all u  v.
3: Match the edge puvq PRv (if Rv �∅) with probability αupvq if u is unmatched.
4: end for

Note that Algorithm 2 is well de�ned, since by Equation (5), αupvq ¤ 1 and Algorithm 2 matches

no more than one vertex to v by (4). It remains to show that Algorithm 2 is a 1{2-batched OCRS with

respect to R. We prove that Prrpuvq is matcheds � xuv
2

by induction on the vertices V , according

to the arrival order. For the base case, V �∅, the argument trivially holds. For the induction step,

assume that Prrpuzq is matcheds � xuz
2

for all u, z   v. We show that Prrpuvq is matcheds � xuv
2

for all u  v. In what follows, we say that �u is unmatched at v" if u is unmatched right before v

arrives.

Pr ru is unmatched at vs � 1�
¸
z v

Pr rpuzq is matcheds � 1�
1

2

¸
z v

xuz, (6)

where the second equality follows from the induction hypothesis. Therefore,

Pr rpuvq is matcheds � Pr ru is unmatched at vs �Pr rpuvq PRvs �αupvq

(5),(6)
�

�
1�

1

2

¸
z v

xuz

�
�

1

2�
°

z v xuz

�xuv �
xuv

2
.

In order to prove that Algorithm 2 is a 1
2
-batched OCRS with respect to R, we need to show that

Prrpuvq P Iv |Rv � tpuvqus ¥ 1{2 for every u  v. Indeed,

Pr rpuvq P Iv |Rv � tpuvqus � Pr ru is unmatched at vs �αupvq

(5),(6)
�

�
1�

1

2

¸
z v

xuz

�
�

1

2�
°

z v xuz

�
1

2
. �
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Computational aspects. Here we discuss how our algorithm can be implemented e�ciently.
Note that given the probabilities txuvupuvqPE, we can calculate tαupvqupuvqPE by Equation (5). Thus
our batched OCRS can be implemented in polynomial time, if we are explicitly given the probability
density functions of each element in R. However, the batched OCRS in the reduction to prophet
inequality, grants us only sample access to R. In a sense, it is a problem of calculating the value
and estimating basic statistics of the maximum weighted matching benchmark. If we have only a
sample access to R, we can still apply standard Monte-Carlo algorithm to estimate xuv's within
arbitrary additive accuracy (with high probability), which leads to estimation of tαupvqupuvqPE within
arbitrary multiplicative accuracy (by Equation (5) and the fact that αupvq ¥

1
2
). This gives us a

p 1
2
� ϵq-batched OCRS that runs in polyp|V |, 1

ϵ
q time.

Guarantees against a stronger benchmark. The guarantee in De�nition 2 can be
strengthen to hold against the stronger benchmark of the optimal fractional matching. This exten-
sion of the de�nition of the batched OCRS and the reduction from batched prophet inequality to
batched OCRS are presented in Appendix A. The construction of the OCRS for the setting of
fractional matching in the vertex arrival model is given in Appendix C.

4. A 0.337-OCRS for Matching with Edge Arrival Given a graph G� pV,Eq (not neces-
sarily bipartite), the elements of the prophet inequality setting are the edges e PE, and the family
of feasible sets M is given by all matchings in G, i.e., M �E is feasible M PM i� e1X e2 �∅ for
any e1, e2 PM .
In the edge arrival model, the edges arrive in an arbitrary unknown order σ: eσp1q, . . . , eσp|E|q.

Upon arrival of edge e� puvq, the algorithm must decide whether to match it (provided that u and
v are still unmatched), or leave e unmatched potentially saving u and/or v for future matches. Let
Bσ

i be the singleton teσpiqu. The set of feasible ordered partitions for the edge arrival model is

Be.a. def
�� tpBσ

1 , . . . ,B
σ
|E|quσPSE

,

where SE is the set of permutations over E.
In what follows we construct a c-OCRS for the edge arrival model. We start with a warm-up

in Section 4.1, establishing a 1
3
-OCRS. In Section 4.2 we present an improved 0.337-OCRS, using

subtle observations about correlated events. Our results imply a prophet inequality with competitive
ratio 0.337 for the edge-arrival model. In Appendix B we show that this guarantee holds also with
respect to the optimal ex-ante matching (which is a stronger benchmark; stronger even than the
optimal fractional matching).
In batched OCRS we de�ne a sampling scheme R (independent across batches), which in turn

de�nes corresponding marginals x. If every batch consists of a single element (as in the model of
matching with edge arrival), any vector of marginal probabilities x P r0,1sE induces the unique
sampling scheme R. Hence, R is described by x P r0,1sE. Let x be any probability vector such that¸

e:vPe
xe ¤ 1 for all v P V. (7)

Note that the sampling scheme R de�ned in De�nition 3, when applied to matching with edge
arrival, satis�es this condition.
Let σ be an arbitrary (unknown) order of the edges. Let R �

�
ePE Rσpeq be a sampling scheme

that independently generates Re for each edge e as follows. Re � teu with probability xe, and Re �∅
otherwise. To simplify notation, we sometimes use xuv to denote xpuvq. Recall that the de�nition of
c-OCRS requires the selected set I to be feasible, and each element e P E to satisfy Prre P I | e P
Res ¥ c. That is, the probability that e is selected given that it is in Re should be at least c. Our
algorithm will actually guarantee the last inequality with equality, namely that Prre P I | e PRes � c
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Algorithm 3 c-OCRS for edge arrival

1: At the arrival of edge puvq
2: Given the arrival order σ puvq of the edges preceding puvq, calculate

Prru, v are unmatched at puvqs.
3: De�ne

αpuvq
def
��

c

Prru, v are unmatched at puvqs
(8)

4: If (i) u, v are unmatched, and (ii) puvq PRpuvq, then match puvq with probability αpuvq.

for all e PE. In the description of the algorithm and throughout this section, we write �at puvq� or
�at e� as a shorthand notation to indicate the time right before the arrival of the edge e� puvq.
Note that the term Prru, v are unmatched at puvqs involves both randomness from R and from

previous steps of our algorithm. It holds that:

Pr
�
puvq is matched | puvq PRpuvq

�
�Pr ru, v are unmatched at puvqs �αpuvq

(8)
� c, (9)

which satis�es the inequality required by c-OCRS (Equation (1)).
It remains to show that Algorithm 3 is well-de�ned, i.e., that αe ¤ 1 for all e PE. In Section 4.1

we show that c � 1
3
can be proved using a relatively simple analysis. In Section 4.2 we present a

more involved analysis showing that one can improve 1{3 to c� 0.337.

Computational aspects. The computation of txeuePE is similar to the vertex arrival setting.
In fact, we can work with a stronger benchmark of the ex-ante relaxation in the edge arrival setting,
which is easier from the computational view point and admits a polynomial time algorithm that
�nds txeuePE as the solution to the ex-ante relaxation. By contrast to the vertex arrival setting,
given txuvupuvqPE, it might take exponential time to precisely calculate tαpuvqupuvqPE in Algorithm 3.
We still can use Monte-Carlo method to estimate αpuvq's within arbitrary multiplicative accuracy
(by the fact that αpuvq ¥ 1

3
), which results in a p0.337� ϵq-OCRS that runs in polyp|V |, 1

ϵ
q time.

Guarantees against a stronger benchmark. In Appendix B we show that for the edge
arrival model, our construction gives an approximation with respect to an even stronger benchmark,
known as the ex-ante relaxation.

4.1. Warm-up: 1
3
-OCRS

Theorem 3. There is a 1
3
-OCRS for matching in general graphs with edge arrivals.

Proof. Let c � 1
3
. We prove that all αe ¤ 1 for every edge e by induction on the set of edges,

according to their arrival order. For the base case (an empty set), the argument holds trivially. We
next prove the induction step. We can assume by the induction hypothesis that αe ¤ 1 for every edge
e PE but the last arriving edge puvq. To �nish the induction step we need to show that αpuvq ¤ 1.
Recall that our algorithm matches each edge e preceding puvq with probability c �xe. Therefore,

Pr ru is matched at puvqs �
¸
s�v

c �xus ¤ c and Pr rv is matched at puvqs �
¸
s�u

c �xsv ¤ c. (10)

Indeed, the events that u is matched to the vertex s for each s P V ztvu are disjoint,
Prru matched to ss � c �xus, and

°
s xus ¤ 1; similar argument applies to Prrv is matched at puvqs.

By the union bound, we have

Pr ru, v are unmatched at puvqs ¥ 1�Pr ru is matched at puvqs�Pr rv is matched at puvqs ¥ 1�2c.
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For c� 1{3, 1� 2c� c. Thus,

Pr ru, v are unmatched at puvqs ¥ c and αpuvq �
c

Prru, v are unmatched at puvqs
¤ 1,

as desired. This concludes the proof. �

4.2. Improved Analysis: 0.337-OCRS In order to improve the competitive ratio beyond
1{3, we strengthen the lower bound on the probability that u, v are unmatched at puvq. We
again apply the same inductive argument as in the warm-up, but use more complex estimate on
Prru, v are unmatched at puvqs than a simple union bound. We denote

xu
def
��

¸
sRtu,vu

xus ¤ 1 and xv
def
��

¸
sRtu,vu

xsv ¤ 1.

Similar to (10) we have

Pr ru is matched at puvqs ¤ c �xu and Pr rv is matched at puvqs ¤ c �xv. (11)

Hence, by the inclusion-exclusion principle we have

Pr ru, v are unmatched at puvqs
� 1�Pr ru is matched at puvqs�Pr rv is matched at puvqs�Pr ru, v are matched at puvqs
¥ 1� c � pxu�xvq�Pr ru, v are matched at puvqs . (12)

If the matching statuses of u and v were independent, the bound (12) would be 1� cpxu � xvq �
c2xuxv ¥ 1� 2c� c2, and equating it to c would yield c � 0.382. However, it is possible that the
events that u and v are matched are negatively correlated. The following lemma gives a non-trivial
lower bound on this correlation. This is the most technical lemma in this paper; its proof is the
content of Section 4.3.

Lemma 1. For every c P r0, 1
2
s

Pr ru, v are umatched at puvqs ¥ 1� 2c�
c2

2
�

�
1� 2c

1� c


2

.

The bound in Lemma 1 leads to the construction of the improved 0.337-OCRS.

Theorem 4. There is a 0.337-OCRS for general graphs with edge arrivals.

Proof. We set c � 0.337 to be the solution of 1 � 2c � c2

2
�
�
1�2c
1�c

�2
� c. Then by Lemma 1

Prru, v are unmatched at puvqs ¥ c and αpuvq � c

Prru,v are unmatched at puvqs ¤ 1, as required. �

4.3. Proof of Lemma 1 Fix an edge arrival order σ. We prove Lemma 1 by induction on
the set of edges, according to the arrival order σ. The base case (the empty set) holds trivially. We
next prove the induction step. By the induction hypothesis, we can assume that αe ¤ 1 for every
edge e P E but the last edge puvq in σ. To simplify notations, we slightly abuse the de�nition of
E by excluding edge puvq from E. We need to show that αpuvq ¤ 1. By the induction hypothesis,
Algorithm 3 matches each edge e PE with probability exactly c �xe. For the purpose of analysis, we
think of the following random procedure that uni�es the random realization in R and the random
decisions made by our algorithm.
1. For each e PE, e PRe with probability xe, and conditioned on the event e PRe, e is active with

probability αe.
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2. Greedily pick active edges according to the arrival order σ. I.e., pick an active edge puvq if
both u and v are unmatched at puvq.
In the above procedure, each edge e is active with probability αe �xe (independently across edges).
Then, it is matched if both its ends are unmatched at the time the edge arrives. In the remainder
of this section we give a lower bound on the probability that both u, v are unmatched at puvq.
Let rE � E be the set of the active edges. Suppose there is a vertex u� such that puu�q P rE is

the only active edge of u�. Then u� must remain unmatched before puu�q. When puu�q arrives, u
is either matched before, or it will be matched now. We call such u� a witness of u, as existence of
u� implies that u is matched. Moreover, if both u and v admit witnesses u�, v�, then u, v must be
matched at puvq. Note that by de�nition u� � v�.
Let us give a lower bound on the probability that each of u, v have a witness. We �rst describe

a sampler πu that given the set of active edges rEu � Eu
def
�� te P E|e incident to uu incident to u,

proposes a candidate witness of u. Let πu : 2
E Ñ V Ytnullu be the following random mapping.

1. Resample each e P E-u
def
�� EzEu independently with probability αe � xe. Let the active edges

be pE-u �E-u.
2. Run greedy on the instance G� pV, rEuY pE-uq according to the arrival order σ.
3. If u is matched with a vertex s, return πup rEuq � s; else, return null.

The sampling procedure corresponds to the actual run of our algorithm, since rEuY pE-u has the same
distribution as rE. Thus, the probability that u� is returned as the candidate witness of u equals
the probability that puu�q is matched by our algorithm, which equals c �xuu� . Hereafter, we denote
the event that a vertex u� is chosen by the sampler πu as the candidate witness of a vertex u by
�u� candidate of u". Thus

Pr
rEu,πu

ru� candidate of us � c �xuu� . (13)

We also de�ne a similar sampler πv to generate the candidate witness of v. Then,

Pr ru, v have witnessess

¥
¸

u��v�

u�,v�Rtu,vu

Pr
rE,πu,πv

�
u� candidate of u, v� candidate of v, | rEXEu� | � | rEXEv� | � 1

�
�

¸
u��v�

u�,v�Rtu,vu

Pr
rEu,πu

ru� candidate of us � Pr
rEu,πu

�
puv�q R rE ��� u� candidate of u

�
� Pr

rEv ,πv

rv� candidate of vs � Pr
rEv ,πv

�
pvu�q R rE ��� v� candidate of v

�
� Pr

rEpG�tu,vuq
rpsu�q and psv�q not active @s P V ztu, vus (14)

Lemma 2. For all u, i, j P V such that i� j,

Pr
rEu,πu

�
puiq is not active

�� j candidate of u
�
¥Pr

rEu

rpuiq is not actives

Proof. As 1�Prrpuiq is active
�� j candidate of us �Prrpuiq is not active

�� j candidate of us and
1�Prrpuiq is actives �Prrpuiq is not actives, we just need to show

Pr rpuiq is actives ¥Pr
�
puiq is active

�� j candidate of u
�
,

which is equivalent to

Pr
rEu,πu

�
j candidate of u

��puiq is active�¤ Pr
rEu,πu

rj candidate of us .
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Two types of randomness are involved in this statement, the realization of edges rEu that are incident
to u and the resampling of remaining edges pE-u in πup rEuq. Fix the realization of rEuzpuiq and pE-u.
If j is chosen as the candidate by πu when puiq is active, it must also be chosen when puiq is not
active. This �nishes the proof of the lemma. �

By Lemma 2, Pr
rEu,πu

rpuv�q is not active
��u� candidate of us ¥Pr

rEu

rpuv�q is not actives

and Pr
rEv ,πv

rpvu�q is not active
��v� candidate of vs ¥Pr

rEv

rpvu�q is not actives in (14). Furthermore,

Pr
rEu

�
puv�q R rE��Pr

rEv

�
pvu�q R rE�� Pr

rEpG�tu,vuq

�
@s� u, v psu�q, psv�q R rE�

�
¹

e�psv�q
s�v

Pr
rE

�
e R rE� ¹

e�psu�q
s�u

Pr
rE

�
e R rE�¥ Pr

rEu�

rpu�sq not active @ss � Pr
rEv�

rpv�sq not active @ss .

We also know that Prru� candidate of us � c �xuu� and Prrv� candidate of vs � c �xvv� . So we can
continue the lower bound (14) on Prru, v have witnessess as follows

(14)¥
¸

u��v�

u�,v�Rtu,vu

c2 �xuu�xvv� Pr
rEu�

rpu�sq not active @ss � Pr
rEv�

rpv�sq not active @ss

Lemma 3. For any vertex r, Pr
rEr

rprsq is not active @ss ¥ 1�2c
1�c

.

Proof. Without loss of generality, we assume that neighbors of r are enumerated from 1 to k
in such a way that among all edges incident to r, the edge priq appears as the i-th edge in σ.
Notice that each edge priq is active independently with probability αrixri. Recall that αri � c �
Pr

rErr, i are unmatched at priqs�1. As r is matched to j with probability c �xrj, we have by a union
bound and induction hypothesis

Pr
rE
rr, i are unmatched at priqs ¥ 1�Pr

rE
ri is matched at priqs�Pr

rE
rr is matched at priqs

¥ 1� c�
¸
j i

Pr
rE
rprjq is matcheds � 1� c� c

¸
j i

xrj. (15)

Furthermore, each edge priq is active independently with probability αrixri. Therefore, we have

Pr
rE
rpriq is not active @is �

k¹
i�1

p1�αrixriq �
k¹

i�1

��1�
c �xri

Pr
rE
rr, i are unmatched at priqs

�
¥

k¹
i�1

�
1�

c �xri

1� c� c
°

j i xrj

�
�

k¹
i�1

1� c� c �
°

j¤i xrj

1� c� c
°

j i xrj

�
1� c� c

°
j¤k xrj

1� c
¥

1� 2c

1� c
,

where second equality follows by the de�nition of αri, �rst inequality follows by Equation (15), and
the last inequality by the fact that

°
j¤k xrj ¤ 1. �

We apply Lemma 3 to further simplify the lower bound of Equation (14) on
Prru, v have witnessess.

Pr ru, v have witnessess ¥
¸

u��v�

u�,v�Rtu,vu

c2 �xuu�xvv� �

�
1� 2c

1� c


2

� c2 �

�
1� 2c

1� c


2

�

� ¸
sRtu,vu

xus �
¸

sRtu,vu
xvs�

¸
sRtu,vu

xus �xvs

�
.
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We recall that Prru, v are matched at puvqs ¥ Prru, v have witnessess. Therefore, we get the fol-
lowing bound from Equation (12).

Pr
rE
ru, v are unmatched at puvqs ¥ 1� c

� ¸
sRtu,vu

xus�
¸

sRtu,vu
xvs

�
�Pr

rE
ru, v have witnessess

¥ 1� c

�¸
s

xus�
¸
s

xvs

�
� c2 �

�
1� 2c

1� c


2

�

�¸
s

xus �
¸
s

xvs�
¸
s

xus �xvs

�
, (16)

where all summations are taken over s P V ztu, vu. Note that for all s we have xus, xvs ¥ 0, xus�xvs ¤

1, as well as
°

s xus ¤ 1 and
°

s xvs ¤ 1. Let us �nd the minimum of the function fpxq
def
��RHS of

Equation (16). To conclude the proof it su�ces to show that minx fpxq is at least the value in the
statement of Lemma 1 (where the minimum is over all positive vectors satisfying Equation (7)).

Lemma 4.

fpxq ¥ 1� 2c�
c2

2
�

�
1� 2c

1� c


2

.

Proof. We observe that Bf
Bxui ��c� c2 �

�
1�2c
1�c

�2
� p
°

s xvs � xviq   0 for all i P V ztu, vu. Similarly,
Bf
Bxvi   0 for all i P V ztu, vu. That means that the minimum of f is achieved at a boundary point x,
which does not allow us to increase any of the xvi or xui. The analysis proceed in two cases.

Case (a). If
°

s xus �
°

s xvs � 1, then we can �nd a good upper bound on
°

s xus �xvs as follows.
First, 1

4

°
s xus � xvs ¤

1
4

°
s xus � p1 � xusq �

1
4
� 1

4

°
s x

2
us. Similarly, 1

4

°
s xus � xvs ¤

1
4
� 1

4

°
s x

2
vs.

Second, 1
2

°
s xus � xvs ¤

1
4

°
s x

2
us�

1
4

°
s x

2
vs. Now, if we add the last three inequalities together, we

get
°

s xus � xvs ¤
1
2
. Thus fpxq ¥ 1� 2c� c2 �

�
1�2c
1�c

�2
� p1� 1

2
q, which is equal to the desired bound

in Lemma 1.

Case (b). If
°

s xus   1, or
°

s xvs   1. Then each inequality xus � xvs ¤ 1 must be tight for
every s P V ztu, vu. It means that

°
s xvs�

°
s xus �

°
spxus�xvsq �

°
s 1 PZ, also

°
s xvs�

°
s xus  

2. Therefore,
°

s xvs�
°

s xus ¤ 1. We get that fpxq ¥ 1� cp
°

s xus�
°

s xvsq � 1� c¥ 1� 2c� c2

2
��

1�2c
1�c

�2
. �

5. Discussion In this paper we introduce a framework of batched prophet inequalities and
apply it to stochastic online matching problems. Our results demonstrate the merit of online con-
tention resolution schemes as a useful tool for generating prophet inequalities with good perfor-
mance. The new framework suggests many fascinating avenues for future work. Some of them are
listed below.
1. It would be interesting to study whether our algorithms apply to online matching problems

with other arrival models. For example, upon the arrival of a vertex, all edges from the new vertex
to all future vertices are revealed.
2. We achieve an optimal 1

2
-competitive (resp., 0.337-competitive) algorithm for vertex (resp.,

edge) arrival via OCRS. Are there pricing-based algorithms with comparable performance?
3. For both vertex and edge arrival settings, consider the random arrival order, a.k.a. prophet

secretary. For the one-sided vertex arrivals, Ehsani et al. [19] showed that the competitive ratio can
be improved to 1� 1

e
. Does it generalize to two-sided vertex arrival model?

4. In the edge arrival setting, it seems unlikely that an OCRS can be better than 0.382-selectable
due to the discussion in Section 4.2. Yet, the best upper bounds known for prophet inequality are
3
7
and 0.420 against optimal fractional matching, and ex-ante relaxation, respectively. The gap is

fairly large and it is unclear if OCRS approach can yield tight competitive ratio.
5. This paper focuses on matching feasibility constraints. Consider studying other natural batched

prophet inequality settings, with natural structures of ordered partitions into batches.
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Appendix A: Extension to Fractional OCRS and Prophet Inequality In this section
we extend the de�nition of batched OCRS to fractional-batched OCRS, and extend the reduction
in Theorem 1 between batched prophet inequality against the fractional optimum and fractional-
batched OCRS.

A.1. Fractional Batched OCRS Consider a fractional sampling scheme R that selects a ran-
dom fractional sets, i.e., vectors r P r0,1sE, where r� prtqtPrT s is composed of mutually independent
samples rt P r0,1sBt (recall E �

�
tBt).

Definition 5 (c-fractional-selectable batched OCRS). An online selection algorithm
ALG with respect to a fractional sampling scheme R is a batched OCRS if it selects a set It �Bt at

every time t such that I
def
��

�
tPrT s It PM is feasible. It is a c-batched-OCRS if:

Pr
ALG

�
e P It | r

t � s
�
¥ c � se for all t P rT s, s P r0,1sBt , and e PBt. (17)

The algorithm ALG is oblivious to the partition into batches and to the arrival order of the
batches. It only knows the general structure B. Thus, at time t, ALG chooses It based on B1, . . . ,Bt,
and r1, . . . ,rt.

A.2. Batched Fractional Prophet Inequality For certain feasibility constraints M, it
makes sense to consider fractional optimum f-OPTpwq P r0,1sE, where f-OPT P FM for a frac-
tional relaxation of feasibility family M and f-OPT� argmaxxPFM

xw,xy. The weight of f-OPT is

wpf-OPTpwqq
def
�� xw, f-OPTpwqy ¥wpOPTpwqq.

Definition 6 (c-batched-fractional-prophet inequality). A batched-prophet inequal-
ity algorithm ALG is an online selection process that selects at time t a set It � Bt such that

I
def
��

�
tPrT s It is feasible (i.e., I PM). We say that ALG has competitive ratio c against fractional

optimum if

E
w,I

rwpIqs ¥ c �E
w
rwpf-OPTpwqqs . (18)

A.3. Reduction: Prophet Inequality to OCRS We de�ne the fractional random sampling

scheme Rpw,Fq for w � F as follows. Let rtpwt,Fq
def
�� f-OPTpwt, rwptqq

��
Bt
, where rwptq � F�t is

independently generated of w, i.e., rtpwt,Fqe � f-OPTpwt, rwptqqe for all e P Bt. Let rpw,Fq
def
��

prtpwt,FqqtPrT s. We notice that
1. The distribution of rpw,Fq � Rpw,Fq is a product distribution over the random variables

rtpwt,Fq.
2. Since F is a product distribution, pwt, rwptqq �F.
3. @t P rT s, rtpwt,Fq has the same distribution as f-OPTpwq

��
Bt

(i.e., restriction to e PBt), where
w�F.
4. For every t P rT s,

E
w,R

�
xwt,rtpwt,Fqy

�
�E

w

�
xwt, f-OPTpwq

��
Bt
y
�
. (19)

Theorem 5 (reduction from prophet inequality to OCRS (fractional)). For every set

B of feasible ordered partitions, given a c-batched OCRS for the fractional sampling scheme Rpw,Fq
with w�F, one can construct a batched prophet inequality c-competitive algorithm for w�F against

the fractional optimum.

Proof. Consider the following online algorithm:
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Algorithm 4 Reduction from c-batched prophet inequality to fractional c-batched OCRS

1: for t P t1, ..., T u do
2: Let wt be the weights of elements in Bt

3: Resample the weights rwptq �F�t

4: Let rt Ð f-OPTpwt, rwptqq
��
Bt

(i.e., rte � f-OPTpwt, rwptqqe for each e PBt).

5: It Ð c-OCRS(B1, . . . ,Bt,r
1, . . . ,rt)

6: end for
7: Return I �

�
tPrT s It

Without loss of generality, we may assume that the values of the sampling scheme are discretized,
i.e., there are only countably many values in r0,1sBt that rt can take. Then

E
w,R,I

rwpIqs �
¸
tPrT s

E
w,R,I

rwpItqs

�
¸
tPrT s

¸
sPr0,1sBt

E
w,R,I

�
wpItq

��� rt � s
�
Pr
w,R

�
rt � s

�
�

¸
tPrT s

¸
sPr0,1sBt

E
w,I

�¸
ePBt

we �Pr
I
re P Its

���� rt � s

�
Pr
wt,rt

�
rt � s

�
(17)

¥
¸
tPrT s

¸
sPr0,1sBt

E
wt

�¸
ePBt

we � c � se

���� rt � s

�
Pr
wt,rt

�
rt � s

�
� c

¸
tPrT s

¸
sPr0,1sBt

E
wt

�
xwt, sy

�� rt � s
�
Pr
wt,rt

�
rt � s

�
� c

¸
tPrT s

E
wt,rt

�
xwt,rty

�
(19)
� c

¸
tPrT s

E
w

�
xwt, f-OPTpwq

��
Bt
y
�
� c �E

w
rxw, f-OPTpwqys ,

where the third equality holds since It and w are independent given that rt � s. �

Appendix B: Stronger Benchmarks for Batched Prophet Inequality for Matching
In this section we show that our results for both vertex and edge arrival models hold against
stronger benchmarks than the optimal integral matching. Speci�cally, for the vertex arrival model
we establish guarantees against the optimal fractional matching, and for the edge arrival model, we
establish guarantees against the even stronger benchmark of optimal ex-ante matching. The set of
fractional matchings y� pyeqePE can be speci�ed by the matching polytope

FM
def
�� ty | @v P V

¸
uPV

ypuvq ¤ 1, @e PE ye ¥ 0u.

B.1. Vertex Arrival: Fractional Optimum Let f-OPTpwq
def
�� argmaxyPFM

xw,yy be the
optimal fractional matching. Note that

wpf-OPTpwqq
def
�� xw, f-OPTpwqy ¥wpOPTpwqq.

In this section we show that our result for the vertex arrival model holds against the stronger
benchmark of f-OPTpwq, namely we can strengthen the guarantee in De�nition 2 to

E
w,I

rwpIqs ¥ c �E
w
rwpf-OPTpwqqs .
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Let pBtqtPrT s be a feasible ordered partition in Bv.a.. It induces a fractional random sampling
scheme R with respect to the fractional optimum f-OPT that generates vector rpw,Fq P r0,1sE as
de�ned in Section A.3. Let xf-OPTuv �Errpuvqs, and let xf-OPT � pxf-OPTuv qpuvqPE.

Observe that for any edge puvq, xf-OPTuv �Erf-OPTpwqpuvqs, where w�F. Therefore, xf-OPT PFM

(recall that FM � ty | @v P V
°

uPV ypuvq ¤ 1, @e PE ye ¥ 0u). We also observe that¸
u v

rvpuvq ¤ 1 for every v P V and every realization rv P r0,1sBv , (20)

since rv is a projection of a fractional matching on Bv.
With these two properties, in Appendix C we construct a 1

2
-batched fractional OCRS for vertex

arrival model, which implies a 1
2
-batched fractional prophet inequality for the maximum fractional

matching.

B.2. Edge Arrival: Ex-ante Optimum As was previously observed by [41], for the special
case in which each batch consists of a single element, one can provide the guarantees with respect to
the stronger benchmark of the optimal ex-ante solution. The optimal ex-ante solution y is de�ned
as follows:

y� argmax
¸
e

E
we

�
we|we ¥ F�1

e p1� yeq
�
� ye subject to y PFM .

Let Rex�antepw,Fq � te |we ¥ F�1
e p1� yequ.

By de�nition, the distribution of Rex�antepw,Fq is a product distribution of Rex�ante
e pwe,Feq.

Therefore, any c-OCRS with respect to Rex�antepw,Fq gives us a prophet inequality algorithm with
competitive ratio c with respect to the optimal ex-ante solution. Speci�cally, our 0.337-OCRS from
Section 4 when applied to Rex�ante implies a 0.337-competitive algorithm for the prophet inequality
problem against the ex-ante optimum. Unfortunately, the reduction from general batched prophet
inequalities to batched OCRSs does not work for ex-ante benchmark. E.g., it does not even work
for the vertex arrival setting of our paper.

Appendix C: A 1{2-Batched OCRS for Fractional Matching with Vertex Arrival In
what follows we extend our construction from Section 3 to a 1{2-batched fractional OCRS for vertex
arrival. Let r� pr1, . . .r|V |q be independent random variables over r0,1sBi . Let xuv �Errvpuvqs, and

x� pxuvqpuvqPE.
We write u  v if vertex u arrive before vertex v.

Theorem 6. If r satis�es the following two conditions:¸
u

xuv ¤ 1 for every v P V (21)

¸
u v

rvpuvq ¤ 1 for every v P V and every realization rv P r0,1sBv (22)

Then, r admits a 1{2-batched fractional OCRS for the Bv.a. structure of batches..

Note that r as de�ned in Appendix B for the vertex arrival model satis�es Equations (21),(22).
Proof. Upon the arrival of a vertex v, we compute αupvq for every u  v as follows:

αupvq
def
��

1

2�
°

z v xuz

¤
1

2�
°

z xuz

(21)

¤ 1. (23)

Note that αupvq cannot be calculated before the arrival of v. We claim that the following algorithm
is a 1

2
-batched fractional OCRS with respect to r:
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Algorithm 5 1{2-batched fractional OCRS for vertex arrival

1: for v P t1, ..., |V |u do
2: Calculate xuz �Prrpuvq PRs for all u, z   v and αupvq for all u  v.
3: Among all unmatched u  v, choose one u (or none) with probability rvpuvq �αupvq.
4: If u was chosen, then match puvq.
5: end for

We �rst show that Algorithm 5 is well de�ned; namely, that (i) Algorithm 5 matches not more

than one edge incident to u and v, and (ii) for every v, we can match each available vertex u  v

with probability rvpuvq � αupvq. The worst case is where all previous vertices are available. Thus, a

su�cient condition is that
°

u v r
v
puvq �αupvq ¤ 1. Indeed,

¸
u v

rvpuvq �αupvq
(23)

¤
¸
u v

rvpuvq
(22)

¤ 1.

It remains to show that Algorithm 5 is a 1{2-batched fractional OCRS with respect to r. We

prove that Prrpuvq is matcheds � xuv
2

by induction on the set of vertices V , according to their

arrival order. The base of the induction (V �∅) holds trivially. For the induction step, assume that

Prrpuzq is matcheds � xuz
2

for all u, z   v. We show that Prrpuvq is matcheds � xuv
2

for all u  v.

In what follows, we say that �u is unmatched at v" if u is unmatched right before v arrives.

Pr ru is unmatched at vs � 1�
¸
z v

Pr rpuzq is matcheds � 1�
1

2

¸
z v

xuz. (24)

Therefore,

Pr rpuvq is matcheds � Pr ru is unmatched at vs �E
�
rvpuvq �αupvq

�
(23),(24)
�

�
1�

1

2

¸
z v

xuz

�
�

1

2�
°

z v xuz

�xuv

�
xuv

2
.

To conclude the proof that Algorithm 5 is a 1
2
-batched fractional OCRS with respect to r, we show

that for every u  v and every r0,1sBv
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Pr rpuvq P Iv | r
v � ss �Pr ru is unmatched at vs � spuvq �αupvq

(23),(24)
�

�
1�

1

2

¸
z v

xuz

�
�

1

2�
°

z v xuz

� spuvq �
spuvq
2

. �

Appendix D: Upper Bounds for Matching Prophet Inequality In this section we
present upper bounds on the competitive ratios for matching prophet inequality with edge arrival,
with respect to the fractional and ex-ante optimal solutions. Note that the 1{2 competitive ratio
with respect to the classical prophet inequality extends trivially to matching prophet inequality (for
both vertex and edge arrival models), implying that our 1{2 competitive ratio for vertex arrival, as
implied from Section 3, is tight. The following propositions give upper bounds on the competitive
ratio of prophet inequalities for matching with edge arrival. Proposition 1 gives an upper bound with
respect to the optimal fractional matching, and Proposition 2 gives an upper bound with respect to
the optimal ex-ante matching (see de�nition below).

Proposition 1. Under the edge arrival model, no online algorithm can get better than 3
7
of

f-OPT, even for 6-vertex graphs.

Proof. Consider the graph depicted in Figure 1(a) with 6 vertices a, b, c, d, e, f , where edges pabq,
pbcq, pacq, and pdeq, pefq, pdfq have a �xed weight of 1, and all other 9 edges have weight 1

4ϵ
with

probability ϵ (for an arbitrarily small ϵ), and 0 otherwise. We refer to the latter edges as the big
edges. Suppose the 6 �xed edges arrive �rst, followed by the big edges.
The optimal fractional solution is the following: if there exists a big edge (this happens with

probability 9ϵ�Opϵ2q), then take it; else take each of the �xed edges with probability 1{2. This
approximately gives us 9ϵ 1

4ϵ
�p1� 9ϵq3� 21

4
.

We next show that any online algorithm gets at most 9
4
, resulting in a ratio of 3

7
, as claimed. An

online algorithm can choose to select either 0, 1, or 2 �xed edges, without knowing the realization
of the big edges. If it chooses 0 �xed edges, it gets � 9ϵ 1

4ϵ
� 9

4
. If it chooses 1 �xed edge, it gets

� 1 � 3ϵ 1
4ϵ
� 7

4
. If it chooses 2 �xed edges (one from each triangle), it gets � 2 � ϵ 1

4ϵ
� 9

4
. This

completes the proof. �

Figure 1. Upper bounds for matching prophet inequality with edge arrival. (a) upper bound w.r.t. optimal fractional
matching. Solid lines have weight 1; dotted lines have weight 1{4ϵ w.p. ϵ. (b) upper bound w.r.t. optimal ex-ante
matching. Solid lines have weight 1 w.p. 1{2; dotted lines have weight 15{62ϵ w.p. ϵ.

A stronger benchmark than the optimal fractional matching is the optimal ex-ante matching
y P r0,1sE, de�ned as follows:

y� argmax
¸
e

Ewe

�
we | we ¥ F�1

e p1� yeq
�
� ye subject to y PFM

ex-ante-OPTpFq �
¸
e

Ewe

�
we | we ¥ F�1

e p1� yeq
�
.

The following proposition gives an upper bound with respect to the optimal ex-ante matching.
Note that our lower bounds for edge arrival apply also with respect to the optimal ex-ante solution
(see Section B.2).
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Proposition 2. Under the edge arrival model, no online algorithm can get better than 135
321

of

ex-ante-OPT, even for 6-vertex graphs.

Proof. Consider the graph depicted in Figure 1(b) with 6 vertices a, b, c, d, e, f , where edges pabq,
pbcq, pacq, and pdeq, pefq, pdfq have a weight of 1 with probability 1

2
and 0 otherwise. All other 9

edges have weight 15
62ϵ

with probability ϵ (for an arbitrarily small ϵ), and 0 otherwise. We refer to the
latter edges as the big edges. Suppose the edges pabq, pbcq, pacq arrive �rst, followed by the edges
pdeq, pefq, pdfq, and only then the big edges arrive.
The optimal ex-ante solution is the following: it takes the big edges with probability ϵ and the

other edges with probability of approximately 1
2
. This gives approximately a value of 9ϵ 15

62ϵ
�3� 321

62
.

We next show that any online algorithm gets at most 135
62
, resulting in a ratio of 135

321
, as claimed.

An online algorithm can choose to select either 0 or 1 edges from the set tpabq,pbcq,pcaqu without
knowing the realization of the big edges. If it chooses none of the edges pabq,pbcq,pcaq, it gets
1
8
�9ϵ � 15

62ϵ
� 7

8
maxp9ϵ � 15

62ϵ
,1�3ϵ � 15

62ϵ
q�Opϵq � 135

62
�Opϵq. If it chooses one edge from tpabq, pbcq, pcaqu,

it gets � 1� 1
8
� 3ϵ � 15

62ϵ
� 7

8
maxp3ϵ 15

62ϵ
,1� ϵ 15

62ϵ
q�Opϵq � 135

62
�Opϵq. This completes the proof. �

In Appendix G we establish an improved upper bound for the setting of multigraphs.

Appendix E: Other de�nition of batched-OCRS: bad example Here, we discuss why a
natural generalization of the previous OCRS for singletons to batched-OCRS in which one simply
requires that PrR,Ire P Is ¥ c � xe instead of Equation (1) might be problematic. In particular, the
standard reduction from a c-selectable OCRS to c-competitive prophet inequality ([23]) might not
work in the batched setting for such de�nition of c-selectable batched-OCRS.
The problem with the standard reduction in batched settings is that there might be a dependency

between the realized set and its weight. Our more complex approach (Equation (1)) requires the
appropriate condition to hold for every realized set, thus allows us to account for the weight given
any realized set.
To illustrate this point, consider the following example with 4 elements t1,2,3,4u and the down-

ward closed family of feasible sets tt1,3u, t1,4u, t2,3u, t2,4u, t3,4u, t1u, t2u, t3u, t4u,∅u, i.e., the
maximal feasible sets have all possible 2 element subsets of t1,2,3,4u except the subset t1,2u (which
is a matroid). The elements arrive in two �xed batches: B1 � t1,2u and B2 � t3,4u. We also consider
a respective Prophet Inequality setting, in which all elements have weights independently distributed
according to w�F�

±4

i�1Fi, where

F1 � F2 : Pr
w�F1

rw� εs � 1 and F3 � F4 : Pr
w�F3

rw� 1s � 0.5, Pr
w�F3

rw� 0s � 0.5,

for some very small ε. The optimum solution OPTpwq picks the set t3,4u if w3 � w4 � 1, and
otherwise picks a set of size 2 with exactly one element among t1,2u and the larger element among
t3,4u. The expected weight of the optimum is

E
w�F

rwpOPTpwqqs � E
w�F

rw3s� E
w�F

rw4s�Opεq � 1�Opεq.

The standard sampling scheme R�R1\R2 for the reduction from the Prophet inequality to OCRS
observes the weights in the current batch and resample the weights of the remaining elementsrwptq �F�t; then it takes the set Rt �BtXOPTpwt, rwptqq for t P t1,2u. In our case,

R1 �

$'&'%
t1u with probability 3

8

t2u with probability 3
8

∅ with probability 1
4

R2 �

$'&'%
t3u with probability 3

8

t4u with probability 3
8

t3,4u with probability 1
4

The marginal probability of the elements to be sampled in R are as follows:

x1 �Pr r1 PRs � x2 �
3

8
x3 �Pr r3 PRs � x4 �

5

8
.
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For such a sampling scheme R one can achieve a pretty good c-selectable OCRS with c � 17
20
, by

following a simple greedy algorithm that includes as many elements from Rt into a feasible set I
as it can at each stage t. In particular, this greedy OCRS would always select elements 1 and 2,
whenever 1, or 2 are included in R1, i.e.,

Pr
R,I

r1 P Is �Pr
R,I

r1 PRs � x1 Pr
R,I

r2 P Is �Pr
R,I

r2 PRs � x2.

Sometimes greedy algorithm won't be able to take both 3 and 4 into I if R1 �∅, in which case it
will �ip a coin and take one of the 3 or 4 uniformly at random. Thus to calculate Prr3 P Is (similarly
Prr4 P Is) we consider two cases R1 �∅ and |R1| � 1 and get

Pr r3 P Is �Pr rR1 �∅s �
�
Pr rR2 � t3,4u | R1 �∅s�Pr rR2 � t3u | R1 �∅s



�Pr r|R1| � 1s �

�
1

2
Pr rR2 � t3,4u | |R1| � 1s�Pr rR2 � t3u | |R1| � 1s



�

1

4
�

�
1

4
�

3

8



�

3

4
�

�
1

2
�
1

4
�

3

8



�

17

32
�

17

20
�
5

8
�

17

20
�x3.

Now, if we try to convert this greedy 17
20
-selectable OCRS into a prophet inequality algorithm ALG

that selects a set I with the matching marginal probabilities PrIr1 P Is �PrIr2 P Is �
3
8
, then its

competitive ratio will be noticeably smaller than 17
20
. Indeed,

E
w,I

rALGpwqs �Pr rI XB1 �∅s � E
w,I

rw3�w4 | I XB1 �∅s
�Pr r|I XB1| � 1s � E

w,I
rmaxpw3,w4q | |I XB1| � 1s�Opεq

�
1

4
� E
w�F

rw3�w4s�
3

4
� E
w�F

rmaxpw3,w4qs�Opεq

�
1

4
� pE rw3s�E rw4sq�

3

4
� 1 �Pr rw3 � 1 or w4 � 1s�Opεq

�
1

4
� 1�

3

4
�
3

4
�Opεq �

13

16
�Opεq �

�
13

16
�Opεq



� E
w�F

rwpOPTpwqqs ,

i.e., the corresponding algorithm is only 13
16
-competitive, while we would like to have c-competitive

algorithm with the same c� 17
20

as the c-selectable OCRS we constructed before.

Appendix F: Pricing Approach: 1
4
upper bound In this appendix we present a natural

extension of the pricing-based algorithm of Feldman et al. [21] to the case of two-sided vertex arrival
in bipartite matching, and show that it does not achieve a competitive ratio better than 1

4
. Upon

arrival of a vertex v, the algorithm sets its price pv to be a half of the expected future contribution
(to the optimum matching) of future edges incident to v. It then considers an edge puvq only if its
weight covers the sum of the prices of its end points (i.e., wuv ¡ pu� pv). Among those, it chooses
the one that maximizes wuv�pu�pv. This algorithm appears as Algorithm 6 below, where OPT pwq
denotes the max-weight matching under weights w, and u  v denotes that vertex u arrives before
vertex v.

Algorithm 6 Dynamic Pricing Algorithm

Let pv �
1
2

°
u¡v Ew�Frwuv � Irpuvq POPTpwqss.

Let k P argmaxu v,u unmatchedtwuv � puu.
If wvk� pu ¥ pv, then include pvkq in the matching.

The example depicted in Figure 2 shows that the competitive ratio of Algorithm 6 is at most
1
4
. In this example, the expected maximum weight matching is 4 � 4ϵ

1�ϵ
(by taking edge pcdq if
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wcd ¡ 0, and taking pacq otherwise). Suppose the arrival order is a, b, c, d. The prices calculated
according to Algorithm 6 under this arrival order are pa �

1�ϵ
1�ϵ

, pb � 0, pc � 1, pd � 0. Given these
prices, Algorithm 6 always chooses the edge pbcq, which gives approximately 1

4
of the expected

maximum weight matching.

Figure 2. An upper bound of 1{4 on the pricing-based algorithm (Algorithm 6) for max-weight matching with two-
sided vertex arrivals.

Appendix G: Extending to Multigraphs In this section we study multigraphs in the edge
arrival model. We �rst show that our positive results (i.e., lower bounds) for simple graphs extend
to multigraphs. We then establish a stronger hardness result for multigraphs with respect to the
optimal fractional solution.
We �rst claim that Theorem 3 holds also with respect to multigraphs. The proof holds almost

intact, except that xe adjusted accordingly. We present the proof here for completeness.

Theorem 7. There is a 1
3
-OCRS for matching in general multigraphs with edge arrivals.

Proof. Let c � 1
3
. We prove that all αe ¤ 1 for every edge e by induction on the set of edges,

according to their arrival order. For the base case (an empty set), the argument holds trivially. We
next prove the induction step. We can assume by the induction hypothesis that αe1 ¤ 1 for every
edge e1 PE but the last arriving edge e� puvq. To �nish the induction step we need to show that
αe ¤ 1. Recall that our algorithm matches each edge e1 preceding e� puvq with probability c � xe1 .
Therefore,

Pr ru is matched at e� puvqs �
¸

e1 e:uPe1
c�xe1 ¤ c and Pr rv is matched at e� puvqs �

¸
e1 e:vPe1

c�xe1 ¤ c.

By the union bound, we have

Pr ru, v are unmatched at e� puvqs ¥ 1�Pr ru is matched at e� puvqs�Pr rv is matched at e� puvqs ¥ 1�2c.

For c� 1{3, 1� 2c� c. Thus,

Pr ru, v are unmatched at e� puvqs ¥ c and αe�puvq �
c

Prru, v are unmatched at e� puvqs
¤ 1,

as desired. This concludes the proof. �

We next claim that Lemma 1 holds with respect to multigraphs, and thus Theorem 4 as well. The
proof of Lemma 1 holds almost as is, except that now there may be multiple edges between u and
v. As a result, in Equation (16), we need to separate the edges into ones that are of the form pu, vq
and ones that are not. For edges of the latter form, the analysis remains intact. Having multiple
edges of the form pu, vq introduce positive correlation for u and v being matched simultaneously.
Since our analysis works by establishing lower bound on the positive correlation for u and v being
matched simultaneously, having multiple edges of the form pu, vq works in our favor.
We next present an improved upper bound for multigraphs (with respect to the optimal fractional

solution).
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Proposition 3. For multigraphs, under the edge arrival model, no online algorithm can get

better than 2
5
of f-OPT, even for 3-vertex multigraphs.

Proof. Consider the graph depicted in Figure 3 with 3 vertices a, b, c, where edges pabq, pbcq, pacq
have a deterministic weight of 1, and the second edge from a to b has a weight 1

ϵ
with probability

ϵ (for an arbitrarily small ϵ), and 0 otherwise. We refer to the latter edge as the big edge. Suppose
the three deterministic edges arrive �rst, followed by the big edge.
The optimal fractional solution is the following: if the big edge's weight is non-zero (this happens

with probability ϵ), then take it; else, take each of the deterministic edges with probability 1{2. This
gives approximately ϵ 1

ϵ
� p1� ϵq 3

2
� 5

2
. One can easily verify that no online algorithm can achieve

more than weight 1. �

Figure 3. Upper bound for matching prophet inequality with edge arrival with respect to optimal fractional matching
in multigraphs. Solid lines have weight 1; the dotted line has weight 1{ϵ w.p. ϵ.
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