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‘We provide prophet inequality algorithms for online weighted matching in general (non-bipartite) graphs,
under two well-studied arrival models, namely edge arrival and vertex arrival. The weights of the edges are
drawn from a priori known probability distribution. Under edge arrival, the weight of each edge is revealed
upon arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival,
the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and
the algorithm decides which of these edges, if any, to include in the matching. To study these settings,
we introduce a novel unified framework of batched-prophet inequalities that captures online settings where
elements arrive in batches. Our algorithms rely on the construction of suitable online contention resolution
scheme (OCRS). We first extend the framework of OCRS to batched-OCRS, we then establish a reduction
from batched-prophet inequality to batched-OCRS, and finally we construct batched-OCRSs with selectable
ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of
the art for the corresponding settings. For vertex arrival, our result is tight. Interestingly, a pricing-based
prophet inequality with comparable competitive ratios is unknown.

Key words: prophet inequality; online matching; online stochastic matching; online contention resolution
scheme
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1. Introduction Online matching is a central problem in the area of online algorithms, and is
extensively used in economics to model rapidly appearing online markets. Some prominent applica-
tions include matching platforms for ride sharing, healthcare (e.g., kidney exchange programs), job
search, dating, and internet advertising [44, 15, 8, 43|. As many of the online platforms accumulate
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huge amounts of statistical data and use it heavily in their online decision making, it is natural
to study online matching in Bayesian settings; i.e., assuming a priori knowledge of the probability
distribution from which values are drawn.

The study of optimal (or nearly optimal) online decisions in Bayesian settings has been extensively
studied within the prophet inequality paradigm. Prophet inequality appeared first as a fundamental
result in optimal stopping theory [38, 39, 47], and was later extended to online selection problems
under more complex feasibility constraints, such as uniform matroids [29], general matroids [37],
intersection of matroids [37], general downward-closed feasibility constraints [45], and most relevant
to our present work: matching in graphs [3, 21, 26].

In a prophet matching problem in bipartite graphs with one-sided vertex arrival, edge weights are
drawn from known probability distributions, and upon the arrival of a vertex v, the weights of all
edges from v to its neighbors are revealed. An immediate and irrevocable decision should be made
by the online algorithm regarding whether to match v and to which vertex.

The performance of an online algorithm is measured by its competitive ratio, namely the ratio
between the expected total weight of the selected matching and the expected total weight of the
optimal matching.

For one-sided vertex arrival in bipartite graphs, Feldman et al. [21] devised a 1/2-competitive
algorithm, for an adversarial arrival order, using a pricing-based approach.! In the edge arrival
model, edges arrive in an adversarial order, and edge weights are revealed upon arrival. Clearly,
the edge arrival model is harder than the vertex arrival model, since edge weights are revealed
one by one, whereas in the vertex arrival model, some edge weights are revealed simultaneously.
Indeed, Gravin and Wang [27] showed that no prophet algorithm for this setting achieves a better
competitive ratio than 4/9, even in bipartite graphs (this upper bound was later improved to 3/7
by Alon et al. [4]). On the positive side, Gravin and Wang [27]| devised a pricing/threshold-based
algorithm that gives a competitive ratio of 1/3 for matching in bipartite graphs.

The aforementioned studies focus on matching in bipartite graphs, and under vertex arrival they
further focus on one-sided arrival. In reality, many matching applications cannot be captured by
these models. For example, matching in ride-sharing platforms is better captured by two-sided
bipartite graphs, where both drivers and passengers arrive dynamically. This is also the case for
buyers and sellers in e-commerce applications, ad slots and advertisers in ad auctions, and jobs
and workers in online labor markets. Moreover, other applications cannot be captured by bipartite
matching at all, and are better captured by matching in general graphs. This is the case, for example,
in exchange platforms such as kidney exchange, where every vertex corresponds to a patient-donor
pair, and all vertices play the same role, with no distinction to “left" and “right" sets.

A natural problem arises: Do the competitive ratios obtained for prophet matching in bipartite
graphs extend to general graphs? This is the problem we study in this work.

Interestingly, a similar evolution took place with respect to the seminal paper of Karp et al.
[33]. The original paper introduced the problem of online matching in the fully adversarial model,
and studies it under one-sided vertex arrival in bipartite graphs. Follow-up work by Gamlath et al.
[25], Wang and Wong [48] consider this problem under more general arrival models, including edge
arrival in bipartite and general graphs, and vertex arrival under both two-sided arrival in bipartite
graphs and general graphs. By analogy, our work introduces the same extensions with respect to
matching in prophet inequality setting (e.g., Bayesian).

1.1. Our Contribution Table 1 presents our results in the context of previous results. The
top row corresponds to unweighted graphs under the fully adversarial model (i.e., no Bayesian
information). The bottom row corresponds to weighted graphs under the Bayesian model (i.e., our
setting). The left and right columns correspond to the edge- and vertex-arrival models, respectively.

! For the case of known or random arrival order, a 1/2-competitive algorithm has been devised by [3].
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Edge Arrival Vertex Arrival
One Sided Two Sided/A h

(Bipartite graphs) (Bipartite) 1Y Brapas

> 2+ Q(1)(any graph) [25]

Bipartite/Any graphs

Worst-case | 3 (tight)

N
(unweighted) | bipartite & any graphs [25] 1- (tight) [33]

< 0.591(bipartite graphs) [9]

> % (bipartite graphs) [27] > 7 (any graph)
5 D,
Bayesian < 5 (bipartite graphs) [27] | (eight) (21 (Theorem 2)
i 2
(weighted) > 0.337 (any graph) < 3 (tight) one sided arrival
(Theorem 4) bipartite graphs

TABLE 1. Competitive ratios for online matching: previous and new results. New results are indicated in bold.

The right column is further divided to one-sided arrival in bipartite graphs and more general models
(i.e., 2-sided arrival in bipartite graphs, and general arrival in general graphs).

Matching with vertexr arrival. We devise a %—competitive prophet inequality for general
(not necessarily bipartite) graphs. This result is tight (a matching upper bound is derived from the
classical prophet inequality problem). Moreover, our competitive ratio holds also with respect to
the stronger benchmark of the optimal fractional matching. Unlike bipartite graphs, the optimal
fractional matching in general graphs may have a strictly higher weight than any integral matching.

An interesting implication of this result is that in the Bayesian setting there is no gap between
the competitive ratio that can be obtained under the 1-sided and 2-sided vertex arrival models in
bipartite graphs, or even under vertex arrival in general graphs. This is in contrast to the non-
Bayesian (worst case) online model, where there is a gap between 1-sided and 2-sided vertex arrivals

(see Table 1).

Matching with edge arrival. We construct a 0.337-competitive prophet inequality for gen-
eral (not necessarily bipartite) graphs, under the edge arrival model. This improves upon the
1/3-competitive prophet inequality constructed by Gravin and Wang [27] and Kleinberg and Wein-
berg [37]. While these previous studies take a pricing/threshold-based approach, we use a different
approach, namely OCRS (see details below). We show that the %—competitive ratio for bipartite
graphs can be obtained by a simple OCRS construction. Moreover, our OCRS construction gen-
eralizes to general graphs?. We further improve the competitive ratio to 0.337 by constructing a
better OCRS, which requires more subtle analysis. These results hold against the even stronger
benchmark of the ez-ante optimal solution that satisfies fractional matching constraints (similar to
the observation in Lee and Singla [41]). Additionally, these results apply to multigraphs as well, see
Appendix G.

1.2. Our Techniques To study prophet inequality for matching, we introduce a unified frame-
work of batched-prophet inequalities that captures online settings where elements arrive in batches
rather than one by one. For example, in the vertex arrival model, upon the arrival of a vertex v,
the weights of all edges from v to previous vertices are revealed simultaneously. Unlike the classical
setting, where the decision in every step is binary (accept/reject), in batched settings, a complex
online decision should be made in each step, based on the corresponding feasibility constraints.
For example, in the matching example, the online algorithm should decide whether to match the
arriving vertex v to a previous vertex, and if so, to which one.

% Note, however, that unlike Gravin and Wang [27], the OCRS-based algorithm is adaptive.
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Unlike [37, 27, 21|, who take a “pricing/charging” approach, our solution takes a different approach,
related to a technique known as Online Contention Resolution Schemes (OCRS) |11, 23|, which we
extend to batched settings. Our techniques proceed in three steps: (i) we extend the framework of
OCRS to batched-OCRS. (ii) we establish a reduction from batched-prophet inequality to batched-
OCRS (where selectable ratios of OCRS translate to prophet inequalities with identical competitive
ratios). (ili) we construct batched-OCRSs with good selectable ratios. In particular, we construct
batched-OCRS with selectable ratios 0.337 and 0.5 for edge- and vertex-arrival models, respectively.

Contention Resolution Schemes (CRS) were introduced by Chekuri et al. [11] as a powerful round-
ing technique in the context of submodular maximization. The CRS framework was extended to
the OCRS framework for online stochastic selection problems by Feldman et al. [23], who provided
OCRSs for different problems, including intersections of matroids and matchings, and showed appli-
cability to prophet inequality [23, 41]. Specifically, for the matching feasibility constraint, Feldman
et al. [23] constructed a 5--OCRS that implies a 5--competitive algorithm for prophet matching
under edge arrival.

We devise a general reduction from batched prophet inequality to batched-OCRS for any
downward-closed feasibility constraint. This general reduction implies that to get prophet inequal-
ities with a certain competitive ratio, it suffices to construct an OCRS with the same selectable
ratio. Given this reduction, it suffices to construct batched OCRS for our matching problems. We
do so for both the edge- and vertex-arrival models. (While the batched setting captures both arrival
models, for the edge arrival model the standard OCRS suffices.)

The OCRS approach is not as common as the pricing approach in prophet inequality settings.
We note that the earlier algorithms of Chawla et al. [10] and Alaei [2], when applied to the classic
prophet inequality setting, become a simple %—competitive algorithm that is indeed a %—OCRS. These
algorithms also appear to be closer in spirit to our OCRS approach than to the more recent papers
on prophet inequality (e.g., [37, 21, 27, 16, 42, 18]). Specifically, when restricted to the setting of
selecting one item, our algorithm is the same as Alaei’s algorithm [2].

One of the reasons that OCRSs are not as prevalent in prophet inequality settings under more
general feasibility constraints is that the formal definition of OCRS is not specifically tailored for
prophet inequalities. As a result, the approximation factors that are obtained by the OCRS approach
are not as tight. For example, the original OCRS introduced by Feldman et al. [23]| for matching
feasibility constraint achieves a competitive ratio of i, whereas even a non-adaptive pricing-based
algorithm achieves the much better ratio of £ [27].

Indeed, these OCRSs are usually designed to work against a strong almighty adversary, who
controls the arrival order of the elements and knows in advance the realization of the instance and
the random bits of the algorithm. The OCRSs we construct in this work are better tailored to the
prophet inequality setting as they are designed against a weaker oblivious adversary, who can select
an arbitrary arrival order, but does not observe the algorithm’s decisions and the realization of the
instance.

Our %— and %—selectable OCRSs for the edge- and vertex arrival models, respectively, are surpris-
ingly simple and intuitive. And yet, the latter OCRS already gives a tight competitive ratio for the
vertex arrival model. Even more surprisingly, at the time of writing this paper, no pricing-based
approach is known to match the %—competitive guarantee attainable by the OCRS for the vertex-
arrival model. Moreover, several natural attempts of generalizing the pricing scheme in Feldman
et al. [21] fail miserably, even for bipartite graphs. For example, one natural generalization would
be to set the price on a new vertex v to be half of the expected contribution of the future edges
incident to v to the optimum matching. As it turns out, this pricing scheme achieves a competitive
ratio as small as i. This is demonstrated in Appendix F. We note, however, that formulating a
general OCRS framework for batched arrivals of elements is not as trivial as it might seem at a first
glance. We give an example in Appendix E illustrating why a simpler and apparently more natural
than ours extension of OCRS to the setting with batched arrivals can be problematic.
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On the other hand, the %—OCRS for the edge arrival model is based on a simple union bound
which still leaves some room for improvement. We improve the ratio of % to 0.337 by bounding the
negative correlation for any pair of events that vertex u and vertex v are matched at the arrival
time of edge (uv). This is the most technical part of the paper.

1.3. Related Work

Prophet inequality. Prophet inequality is highly relevant to the algorithmic mechanism design
literature. Hajiaghayi et al. [29] were the first to realize the applicability of the prophet inequality
framework within mechanism design applications. Later, Chawla et al. [10] applied the prophet
inequality framework to the design of sequential posted price mechanisms that give approximately
optimal revenue in a Bayesian multi-parameter unit-demand setting (BMUD). An important ingre-
dient in their result is the first constant competitive (specifically, %) prophet inequality for the
online weighted matching problem with edge arrival in a bipartite graph. Kleinberg and Weinberg
[37] introduced a general combinatorial prophet inequality for a broad class of Bayesian selection
problems, where the feasible set is represented as an intersection of k matroids. They found a ﬁ—
competitive algorithm for this setting and showed that it can be used for the design of a truthful
mechanism in the BMUD setting with more general feasibility constraints. Alaei et al. [3] studied
the prophet matching problem for k-demand and budgeted buyers, in a setting that is equivalent
to 1-sided vertex arrival model with known arrival order. They provide 1 — \/klﬁ competitive ratio

for k-demand buyers, and 1 — \/21?1@ competitive ratio for budgeted buyers with values bounded by

1/k of the budget. For the case of k =1, they achieve the same % competitive ratio as ours, albeit
in a more restricted setting, and using a different algorithm.

A recent line of work has considered sample based variants of prophet inequalities, where the
distributions of the values are not given explicitly, and the challenge is to provide good competitive
ratios using a limited number of samples [6, 12, 13, 20, 46]. Another related line of work, initiated
in Kennedy [34, 35|, Kertz [36], has considered multiple-choice prophet inequalities, and was later
extended to combinatorial settings such as matroid (and matroids intersection) (Kleinberg and
Weinberg [37], Azar et al. [6], polymatroids Diitting and Kleinberg [17]), and general downward
closed feasibility constrains (Rubinstein [45]).

Online/stochastic matching There is an extensive literature regarding online matching and
stochastic matching problems. Below we survey the studies that are most related to our work. Our
vertex arrival model restricted to the case of bipartite graphs captures the two-sided vertex arrival
model studied by [48, 25], but within a Bayesian setting. For the online setting, Wang and Wong
[48] provided a 0.526-competitive fractional algorithm and Gamlath et al. [25] provided a § + Q(1)-
competitive integral algorithm. Furthermore, Gamlath et al. [25] showed that for the case of bipartite
graphs with edge arrivals, no online algorithm performs better than the straightforward greedy
algorithm, which is %—competitive. Another extension of the 1-sided bipartite matching model, the
fully online matching model has been studied by Ashlagi et al. [5], Huang et al. [30, 31, 32|, motivated
by ride sharing applications. This is a different vertex arrival model in which all vertices from a
general graph arrive and depart online. It is possible to study the stochastic/prophet inequality
version of the fully online model, which we leave as an interesting future direction. Lee and Singla
[40] proposed the batch-arrival model for online matching and designed competitive algorithms that
beat the naive greedy algorithm when there are constant number of batches.

Gravin et al. [26] studied the online stochastic matching problem with edge arrivals (a.k.a. the
unweighted version of the prophet inequality with edge arrivals in this paper) and achieved a 0.506-
competitive algorithm. The stochastic matching setting is also studied in the (offline) query-commit
framework. The input of this problem is an (unweighted) graph associated with the existence prob-
abilities of all edges. The algorithm can query the existence of the edges in any order. However, if
an edge exists, it has to be included into the solution. The Ranking algorithm by Karp et al. [33]



Author: Article Short Title
6 Mathematics of Operations Research 00(0), pp. 000-000, (©) 0000 INFORMS

induces an (1 — 1)-competitive algorithm for this problem on bipartite graphs. Costello et al. [14]
provided a 0.573- competitive algorithm on general graphs and proved a hardness of 0.898. Gamlath
et al. [24] provided a 1 — L-competitive algorithm for the weighted version of this problem.

Online Contention Resolution Schemes (OCRS). Online contention resolution schemes
have also been studied in settings beyond worst case arrivals. Adamczyk and Wlodarczyk [1] con-
sidered the random order model and constructed T—OCRS for intersections of k matroids. Lee and
Singla [41] constructed optimal £-OCRS and (1 —£)-OCRS for matroids with arbitrary order and
random order, respectively. Ofﬂlne contention resolution schemes for matching have also attracted
attention due to its applications in submodular maximization problems [11, 22, 7], and the con-
nection between the correlation gap and contention resolution schemes [28]. We refer the interested
readers to Bruggmann and Zenklusen [7] for a comprehensive recent survey on the topic.

1.4. Paper Roadmap In Section 2 we extend the OCRS and prophet inequality frameworks
to settings where elements arrive online in batches. We begin by introducing the general setting of
batched arrival. In Section 2.1 we extend the notion of OCRS to batched-OCRS. In Section 2.2 we
extend the notion of prophet inequality to batched prophet inequality. In Section 2.3 we establish
a reduction from batched prophet inequality to batched OCRS. In Sections 3 and 4 we construct
OCRSs for graph matching under the vertex- and edge-arrival models, respectively. Upper bounds
on the competitive ratios for the prophet inequality with edge arrivals are provided in Appendix D.
Section 5 concludes this paper with a list of open problems and future directions.

2. Model and Preliminaries: Batched Settings Let E be a set of elements, and let M be
a downward closed family of feasible subsets of F, i.e., if S€ M, then S’ M for any S’ € S. The
elements in F are partitioned into T disjoint sets (batches) By, ..., Br that arrive online in the order
from batch B; to batch Bp. le., at time t, all elements of batch B; appear simultaneously. The
partition of elements into the batches and their arrival order (B;)e[r] should conform to a certain
structure formally specified by a family of all feasible ordered partitions B of E.

Some examples of feasible ordered partitions include the following: (i) all batches in B are required
to be singletons, (ii) given a partial order 7 on F, a feasible ordered partition (B;)cr) € B is required
to have 7(e;) < m(es) for any e; € By, e, € B, where t < s, (iii) suppose the set of elements F consists
of the edges of a bipartite graph G = (L, R; E'), and each batch B; must contain all edges incident
to a vertex ue L.

We illustrate the main concepts in our setting with the following running example.

EXAMPLE 1 (TABULAR FEASIBILITY). In a tabular feasibility setting, there exists a
table with n rows and m columns, and the set of elements is E = {(i, ) | i€ [n],j € [m]}.
The collection of feasible sets is any set of elements that contains at most one element from
each row and at most one element from each column. The elements arrive in T = n batches.
For t =1,...,n, batch ¢ contains all elements in row t; i.e., B, = {(t,7) | j € [m]}. The
algorithm does not know the arrival order of (B,)c[r). The partition family B of E can be
described as a collection of rows ({(4,7) | j € [m]})e[r). Note that the structure of batches
in this example is equivalent to the structure of batches in example (iii) above of 1-sided
vertex arrival in complete bipartite graphs, and the feasibility constraints correspond to
bipartite graph matching.

2.1. Batched OCRS For a given family of feasible batches B, consider a sampling scheme
that selects a random subset R S F as follows: at time ¢, all elements of batch B; arrive, of which
a random subset R; € B; is realized. The realized sets Ry,..., Ry are mutually independent. R is
then defined as the random set R S ety B
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Feldman et al. [23]| introduce the notion of c-selectable online contention resolution scheme
(OCRS), as an online selection process that selects a feasible subset of E such that every realized
element e € R is selected with probability at least ¢, for the special case where every batch is a
singleton. We extend the definition of Feldman et al. [23] to batched OCRSs as follows.

DEFINITION 1 (¢-SELECTABLE BATCHED OCRS). An online selection algorithm ALG is a
batched OCRS with respect to a sampling scheme R if it selects a set I; € R; at every time ¢ such
that ] S |lepry 1¢ is feasible (i.e., I € M). It is called a c-selectable batched OCRS (or in short
c-batched-OCRS) if for every ¢ € [T], every realization S € B, of R;, and every element e € .S, it
holds that:

Prleel, | R,=S]>c. (1)

The algorithm ALG does not know the complete partition into batches and the arrival order of future
batches. It only knows the general structure 3. Thus, at time ¢, ALG chooses I; based on By, ..., By,
and Ry,...,. R;.

Let us demonstrate the concepts above using our running example of tabular feasibility
(Example 1). Consider a sampling scheme R that selects one element from each batch
uniformly at random. The following is a 1/2-batched OCRS with respect to R (for the
case n < m-1n4): given the element sampled by R; in round ¢, if it is feasible (given
previously chosen elements), then we choose it with probability p, = @ (p <1 by

the fact that n < m-In4). We claim that for every ¢, the element sampled by R; is chosen
with probability 1/2. We prove this by induction on ¢. For ¢ = 1, any element in row 1
can be added to I and p; = 1/2. For ¢ > 1, any element in row t can be added to I with
probability (1 — 3% )"~!. Multiplying this probability by p;, gives exactly 1/2. Thus, this is

n

a 1/2-batched OCRS.

2.2. Batched Prophet Inequality In batched prophet inequality, every element e € E has a

weight w,. Let w' def (We)een,, and w def (W')e[r]- Weights are unknown apriori, but for every ¢, w'

is independently drawn from a known (possibly correlated) distribution F;, and w ~ F Qef Il rer) £t

Le., we allow dependency within batches, but not across batches. Let w(S) = _sw,. for any set
S c E. As standard, let F_, =[], ,, F;. The particular partition of elements into batches and their
order are a priori unknown?, except, of course, that (B;)[r] must conform to the general structure
of (By)iwerr] € B. All elements of a batch B, and their weights w' are revealed to the algorithm at
time t. We assume that the arrival order of the batches is decided by an oblivious adversary, i.e.,
the adversary can select an arbitrary partition and order of arrival of the batches in B, but does
not see the realization of the weights w, and the algorithm’s decisions®. Let OPT be a function that
given weights w returns a feasible set of maximum weight (i.e., OPT(w) € arg maxgep w(.9))®.

DEFINITION 2 (¢-BATCHED-PROPHET INEQUALITY). A batched-prophet inequality algorithm

ALG is an online selection process that selects at time ¢ a set I; € B; such that [ def |_|te[T] I, is

feasible (i.e., I € M). We say that ALG has competitive ratio c if

E [w(1)] > ¢ E[w(OPT(w))].

w,I

3 Note that F might impose some constraints on the partition into batches: elements whose weights are dependent
must belong to the same batch. No constraint is imposed on elements whose weights are independent and on the
order of batches.

4 The oblivious adversary is a standard assumption in the literature on online algorithms in stochastic settings.

% We assume that OPT is deterministic (if a given weight vector w induces multiple feasible sets of maximal weight,
OPT(w) returns one of them consistently).
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The batched prophet inequality setting corresponding to Example 1 is one where the
elements arrive in the same batch structure, but also have real-valued weights that are
drawn from known distributions. Say, in our running example w, j = &; - & ;, where §; ~
Uniform[0, 1] and &; ; ~ Uniform[0, 100]. The weights w; ;,) and w, ;,) are independent
random variables for any 4, # 5.

2.3. Reduction: Prophet Inequality to OCRS We define a random sampling scheme

R(w,F) for w ~ F as follows:

where W) ~ F_, are generated independently of w, and R(w,F)

DEFINITION 3 (SAMPLER). Let R,(w',F) <L B, n OPT(w', %) be the random subset of B,

def

- |_|te[T] Rt (th F) .

Note that:

1. The distribution of R(w,F) is a product distribution over the random variables R,(w*, F).

Since F is a product distribution, (wf, W) ~ F.

vte[T], R/(w',F)e M, and OPT(w!,w®) e M. But, R(w,F) might not belong to M.
For every te [T,

U

E [w(R,(w'F))| =E[w(OPT(w) n B,)].

w,R w

In Example 1, the sampler defined in Definition 3 observes the weights of the realized
batch at each time t € [T], samples each & ~ Uniform[0,1] and &; ; ~ Uniform[0, 100]
for i #t and calculates the weights of all other elements w; ; = §&; - §; ;, where 7 # ¢ and
j € [m]. The weights w' in each B, are distributed as (& - & ;) em]- Then, the sampler
finds the maximum weight feasible set and selects in it the element (1f it ex1sts) from the
current batch B;. For a random w', the sampling scheme R,(w*,F) picks a single element
(t,j) € By with probability min(™,1) where j ~ Uniform[m]. Thus we select in R(w,F)
one element from each row ¢ independently and uniformly at random with probability

Vte|[T], Ri(w", F)=R(w,F)n B, has the same distribution as OPT(w) n B;, where w ~ F.

min(%,1). It is easy to see that R(w,F) satisfies all properties 1-5 from above.

THEOREM 1 (reduction: c-batched prophet inequality to c-batched OCRS).

For every

set B of feasible ordered partitions, given a c-batched OCRS for the sampling scheme R(w,F) with

w ~ F, there is a batched prophet inequality algorithm for w ~ F with competitive ratio c.

Proof. Consider the following online algorithm:

Algorithm 1 Reduction from c-batched prophet inequality to c-batched OCRS

1: for te {1, .,T} do

2:  Let w' be the weights of elements in By

3:  Resample the Welghts wi) ~F_,

4 Let R, « OPT(w!,w®) n Bt

5. I« c-OCRS(By,...,B;, Ry,..., R;) for the structure B of batches.
6: end for

7 Return I = |, ;7 1s

Let I be the random set returned by Algorithm 1, and R, (and resp. R = |7 R:) be the sets

defined in step 4 of the algorithm. It holds that

w,}IE%,I[W(I)]:ZwRI It]_z 2 w.R [ (It)‘Rt:S]va),g[Rt:S]'

te[T] te[T] SEBy
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Since I; and w are independent given that R; = S, we also have.

E [w(I)] = > Z Zwe Prlee ] ‘ths Pr [R, = 5]
W te[T] scB, 7 | eeBy W R
Q)
> Z Z E[Zwe R, = ] ]?r [R, = 5]
te[r] 5B, |ees whRe

=c )] 2 w(S) | Ry=5] Pr [R, = 5]
tel7] Sth w,Ry

=c Z E [w(R, ]@ c Z E[w(OPT(w)n B;)]=c-E[w(OPT(w))] ©
e te[] v

We note that our reduction is similar to the classical case in which elements arrive one by one.
However, the set of requirements from the sampling scheme is more demanding in the batched
setting. In particular, our sampling scheme needs to satisfy all 5 properties mentioned right after
Definition 3.

The difference between the batched setting and the standard singleton setting can be best demon-
strated when using the ex-ante relaxation benchmark instead of the integral optimal solution (OPT)
benchmark. In the ex-ante relaxation case the sampling scheme in the batched setting would fail to
satisfy Property 4, as the ex-ante relaxation may select more than a single element within a batch
(whereas Property 4 requires the sampler to select a feasible set within each batch). Clearly, under
singleton arrivals, Property 4 is trivially satisfied also in the ex-ante relaxation case.

3. A 1/2-Batched OCRS for Matching with Vertex Arrival Given a graph G = (V, E)
(not necessarily bipartite), the elements of the prophet inequality setting are the edges e € E, and
the family of feasible sets M is given by all matchings in G, i.e., M € F is feasible iff e; ney =&
for any e;,es € M.

In the vertex arrival model, the vertices arrive in an arbitrary unknown order o: v,(1),. .., Vs(n),
where v, (;) is the vertex arriving at time 7. Upon arrival of vertex v,(;), the weights on the edges from
Uo(i) to all previous vertices v,(;), where j <1, are revealed to the algorithm. The online algorithm
must make an immediate and irrevocable decision whether to match v,(; to some available vertex
Us(j) such that j <i (in which case v,(;) and v,(;) become unavallable) or leave v,(;) unmatched (in

which case v,(;) remains available for future matches). Let B def (Vo(iyVo(j)) | 7 <i}. The set of
feasible ordered partitions for the vertex arrival model is

v.a. def o a
B =={(B17"'7B‘V‘)}U€SV7

where Sy is the set of permutations over V.

In what follows we construct a 3-batched OCRS for the vertex arrival model. By the reduction
in Theorem 1, the constructed batched OCRS gives a batched prophet inequality with competitive
ratio 1/2 with respect to the optimal matching. The sampling scheme R (see Definition 3) for the
vertex arrival batch structure is as follows.

DEFINITION 4 (SAMPLER). For every vertex v arriving at time t, let R, be an independent
random subset of BJ generated by the sampling scheme (R, = BJ n OPT(w!, W), where w' are
the observed weights in the batch B? and W) ~ F_, are generated independently of w), and let
R=|],R,.

For every edge (uv) € E, let x,, Qe Pr|[(uv) € R|.We write u < v if vertex u arrives before vertex
v in the vertex arrival order . In order to construct a %—batched OCRS for R, we first claim that
R satisfies the following two equations:

quv <1 foreveryveV (3)
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|R,| <1 for every veV and every realization of R, (4)

R satisfies (3) since the probability that vertex v is matched in a maximum matching is at most
1. It also satisfies (4), since the sampler matches v to at most one vertex upon the arrival of vertex
v (i.e., selects at most one element).

With this, we are ready to present our main theorem for this section.

THEOREM 2. R admits a 1/2-batched OCRS for the B"* structure of batches.

Proof. Upon the arrival of a vertex v, we compute o, (v) for every u < v as follows:

def 1 1 (3)
(o) L < <1 5

Note that «,(v) cannot be calculated before the arrival of v. We claim that the following algorithm
is a %—batched OCRS with respect to R:

Algorithm 2 1/2-batched OCRS for vertex arrival

1. forve{l,...,|V|} do

2:  Calculate z,, = Pr[(uz) € R] for all u,z <v and «,(v) for all u<wv.

3:  Match the edge (uv) € R, (if R, # @) with probability «,(v) if v is unmatched.
4: end for

Note that Algorithm 2 is well defined, since by Equation (5), v, (v) <1 and Algorithm 2 matches
no more than one vertex to v by (4). It remains to show that Algorithm 2 is a 1/2-batched OCRS with
respect to R. We prove that Pr|[(uv) is matched] = ®4 by induction on the vertices V, according
to the arrival order. For the base case, V = &, the argument trivially holds. For the induction step,

assume that Pr([(uz) is matched] = #2= for all u,z <v. We show that Pr[(uv) is matched] = 4>

for all w < v. In what follows, we say that “u is unmatched at v" if u is unmatched right before v
arrives.

1
Pr [u is unmatched at v] =1— Z Pr[(uz) is matched] =1— 3 2 Tuzs (6)

z<<v z<<v

where the second equality follows from the induction hypothesis. Therefore,

Pr [(uv) is matched] = Pr[uis unmatched at v]-Pr[(uwv) € R,]- a,(v)

Gue (1 1 _ Tuw
B (1 22%2) 2=3 w2

z<<v

In order to prove that Algorithm 2 is a %—batched OCRS with respect to R, we need to show that
Pr[(uv)el, | R, = {(uv)}] = 1/2 for every u < v. Indeed,

Pr|(uw)el, | R, ={(uv)}] = Pr|uis unmatched at v]- o, (v)
Gue [, 1 1 1
- (1 5 2 %) 2= _z.. 2 i

z<<v
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Computational aspects. Here we discuss how our algorithm can be implemented efficiently.
Note that given the probabilities {4, }(uwer, we can calculate {cv,(v)}uv)er by Equation (5). Thus
our batched OCRS can be implemented in polynomial time, if we are explicitly given the probability
density functions of each element in R. However, the batched OCRS in the reduction to prophet
inequality, grants us only sample access to R. In a sense, it is a problem of calculating the value
and estimating basic statistics of the maximum weighted matching benchmark. If we have only a
sample access to R, we can still apply standard Monte-Carlo algorithm to estimate z,,’s within
arbitrary additive accuracy (with high probability), which leads to estimation of {cv,(v)}(uv)ep Within
arbitrary multiplicative accuracy (by Equation (5) and the fact that o, (v) > 1). This gives us a
(3 — €)-batched OCRS that runs in poly(|V], 1) time.

Guarantees against a stronger benchmark. The guarantee in Definition 2 can be
strengthen to hold against the stronger benchmark of the optimal fractional matching. This exten-
sion of the definition of the batched OCRS and the reduction from batched prophet inequality to
batched OCRS are presented in Appendix A. The construction of the OCRS for the setting of
fractional matching in the vertex arrival model is given in Appendix C.

4. A 0.337-OCRS for Matching with Edge Arrival Given a graph G = (V, E) (not neces-
sarily bipartite), the elements of the prophet inequality setting are the edges e € F, and the family
of feasible sets M is given by all matchings in G, i.e., M C E is feasible M e M iff e; n ey = for
any e, es € M.

In the edge arrival model, the edges arrive in an arbitrary unknown order o: e,(1y,...,€s(E))-
Upon arrival of edge e = (uv), the algorithm must decide whether to match it (provided that v and
v are still unmatched), or leave e unmatched potentially saving v and/or v for future matches. Let
By be the singleton {e,(;}. The set of feasible ordered partitions for the edge arrival model is

e.a. def o o
B - {(Blv"'v |E\)}U€SEﬂ

where Sg is the set of permutations over FE.

In what follows we construct a c-OCRS for the edge arrival model. We start with a warm-up
in Section 4.1, establishing a %—OCRS. In Section 4.2 we present an improved 0.337-OCRS, using
subtle observations about correlated events. Our results imply a prophet inequality with competitive
ratio 0.337 for the edge-arrival model. In Appendix B we show that this guarantee holds also with
respect to the optimal ez-ante matching (which is a stronger benchmark; stronger even than the
optimal fractional matching).

In batched OCRS we define a sampling scheme R (independent across batches), which in turn
defines corresponding marginals x. If every batch consists of a single element (as in the model of
matching with edge arrival), any vector of marginal probabilities x € [0,1] induces the unique

sampling scheme R. Hence, R is described by x € [0,1]¥. Let x be any probability vector such that

Z:L‘eglforallvev. (7)

e:vee

Note that the sampling scheme R defined in Definition 3, when applied to matching with edge
arrival, satisfies this condition.

Let o be an arbitrary (unknown) order of the edges. Let R = |,_; Ro(e) be a sampling scheme
that independently generates R, for each edge e as follows. R, = {e} with probability z., and R, = &
otherwise. To simplify notation, we sometimes use x,, to denote x(,,). Recall that the definition of
c-OCRS requires the selected set I to be feasible, and each element e € E to satisfy Prlee ] |ee
R.] = c. That is, the probability that e is selected given that it is in R, should be at least ¢. Our
algorithm will actually guarantee the last inequality with equality, namely that Prleel|ee R.] =c¢
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Algorithm 3 c-OCRS for edge arrival
1: At the arrival of edge (uv)

2: Given the arrival order o ., of the edges preceding (uv), calculate
Pr[u,v are unmatched at (uv)].
3: Define c
def

~ Pr[u,v are unmatched at (uv)]

4:  If (i) w,v are unmatched, and (ii) (uv) € Ru.), then match (uv) with probability o).

for all e€ E. In the description of the algorithm and throughout this section, we write “at (uv)” or
“at €” as a shorthand notation to indicate the time right before the arrival of the edge e = (uv).

Note that the term Pr{u,v are unmatched at (uv)] involves both randomness from R and from
previous steps of our algorithm. It holds that:

Pr [(w) is matched | (uv) € R(y)| = Pr [u,v are unmatched at (uv)] - () © ¢, (9)

which satisfies the inequality required by ¢-OCRS (Equation (1)).
It remains to show that Algorithm 3 is well-defined, i.e., that a, <1 for all ee E. In Section 4.1
1

we show that ¢ = 3 can be proved using a relatively simple analysis. In Section 4.2 we present a

more involved analysis showing that one can improve 1/3 to ¢ =0.337.

Computational aspects. The computation of {x.}.cp is similar to the vertex arrival setting.
In fact, we can work with a stronger benchmark of the ex-ante relaxation in the edge arrival setting,
which is easier from the computational view point and admits a polynomial time algorithm that
finds {z.}.cr as the solution to the ex-ante relaxation. By contrast to the vertex arrival setting,
given {wmj}(uv)e E, it might take exponential time to precisely calculate {a(uv)}(m)e g in Algorithm 3.
We still can use Monte-Carlo method to estimate o ,.,)’s within arbitrary multiplicative accuracy
(by the fact that a ., > 3), which results in a (0.337 —¢)-OCRS that runs in poly(|V], ) time.

Guarantees against a stronger benchmark. In Appendix B we show that for the edge
arrival model, our construction gives an approximation with respect to an even stronger benchmark,
known as the ex-ante relaxation.

4.1. Warm-up: %-OCRS
THEOREM 3. There is a %—OC’RS for matching in general graphs with edge arrivals.

Proof. Let ¢ = % We prove that all o, <1 for every edge e by induction on the set of edges,
according to their arrival order. For the base case (an empty set), the argument holds trivially. We
next prove the induction step. We can assume by the induction hypothesis that o, < 1 for every edge
e€ E but the last arriving edge (uv). To finish the induction step we need to show that oy, < 1.
Recall that our algorithm matches each edge e preceding (uv) with probability c- x.. Therefore,

Pr[u is matched at (uv)| = Z ¢ Tys <c and Pr|vis matched at (uv)] = 2 c-Te <c. (10)

S#vU SFEU

Indeed, the events that w is matched to the vertex s for each s e V\{v} are disjoint,
Pr|u matched to s| = c-x,s, and ) z,s < 1; similar argument applies to Pr|v is matched at (uv)].
By the union bound, we have

Pr [u,v are unmatched at (uv)] = 1—Pr [u is matched at (uv)]—Pr [v is matched at (uv)] =1—2c.
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For ¢=1/3,1—2c=c. Thus,

Cc

Pr [u,v are unmatched at (uv)] > ¢ and o = Pr{u, 0 are unmatched at (u0)] <
Y

as desired. This concludes the proof. o

4.2. Improved Analysis: 0.337-OCRS In order to improve the competitive ratio beyond
1/3, we strengthen the lower bound on the probability that w,v are unmatched at (uv). We
again apply the same inductive argument as in the warm-up, but use more complex estimate on
Pr|u,v are unmatched at (uv)| than a simple union bound. We denote

£ f
T def Z Tus <1 and z, def Z Top < 1.
s¢{u,v} s¢{u,v}

Similar to (10) we have
Pr[u is matched at (wv)] <c-z, and Pr|vis matched at (uwv)]|<c-z,. (11)
Hence, by the inclusion-exclusion principle we have

Pr [u,v are unmatched at (uv)]
= 1—Pr [u is matched at (uv)] — Pr [v is matched at (uv)]+ Pr [u,v are matched at (uv)]
>1—c- (v, +x,)+Pr|u,v are matched at (uv)]. (12)

If the matching statuses of u and v were independent, the bound (12) would be 1 —¢(x, + z,) +
cr,x, =1—2c+ 2, and equating it to ¢ would yield ¢ ~ 0.382. However, it is possible that the
events that u and v are matched are negatively correlated. The following lemma gives a non-trivial
lower bound on this correlation. This is the most technical lemma in this paper; its proof is the
content of Section 4.3.

LEMMA 1. For every ce |0, 5]

2 (1-2¢\"
Pr[u,v are umatched at (uv)] >1—2c+ % ( 1 C) :
—c
The bound in Lemma 1 leads to the construction of the improved 0.337-OCRS.
THEOREM 4. There is a 0.337-OCRS for general graphs with edge arrivals.

Proof. We set ¢ = 0.337 to be the solution of 1 — 2¢ + é . (11*_25)2 = c. Then by Lemma 1
Pr|u,v are unmatched at (uv)] > c and a(y.) = <1, as required. ©

Prlu,v are unmatched at (uv)]

4.3. Proof of Lemma 1 Fix an edge arrival order ¢. We prove Lemma 1 by induction on
the set of edges, according to the arrival order o. The base case (the empty set) holds trivially. We
next prove the induction step. By the induction hypothesis, we can assume that a, <1 for every
edge e € E but the last edge (uv) in 0. To simplify notations, we slightly abuse the definition of
E by excluding edge (uv) from E. We need to show that Q(uvy € 1. By the induction hypothesis,
Algorithm 3 matches each edge e € ' with probability exactly c¢-z.. For the purpose of analysis, we
think of the following random procedure that unifies the random realization in R and the random
decisions made by our algorithm.

1. For each e€ F, e€ R, with probability x., and conditioned on the event e € R,, e is active with
probability c,.
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2. Greedily pick active edges according to the arrival order o. Le., pick an active edge (uv) if
both v and v are unmatched at (uv).

In the above procedure, each edge e is active with probability a. - z. (independently across edges).
Then, it is matched if both its ends are unmatched at the time the edge arrives. In the remainder
of this section we give a lower bound on the probability that both u,v are unmatched at (uv).

Let E C E be the set of the active edges. Suppose there is a vertex u* such that (uu*)e E is
the only active edge of u*. Then w* must remain unmatched before (uu*). When (uu®*) arrives, u
is either matched before, or it will be matched now. We call such u* a witness of u, as existence of
u* implies that v is matched. Moreover, if both v and v admit witnesses u*,v*, then u,v must be
matched at (uv). Note that by definition u* # v*.

Let us give a lower bound on the probability that each of u,v have a witness. We first describe
a sampler 7, that given the set of active edges E, C E, = {e € FEle incident to u} incident to u,
proposes a candidate witness of u. Let 7, : 28 — V U {null} be the following random mapping.

1. Resample each e€ E, dof E\FE, independently with probability «. - x.. Let the active edges
be £, S E.,. R

2. Run greedy on the instance G = (V, E, u E_,) according to the arrival order o.

3. If u is matched with a vertex s, return m,(E,) = s; else, return null. L
The sampling procedure corresponds to the actual run of our algorithm, since E, U E_, has the same
distribution as E. Thus, the probability that u* is returned as the candidate witness of u equals
the probability that (uu*) is matched by our algorithm, which equals c- x,,x. Hereafter, we denote
the event that a vertex u* is chosen by the sampler m, as the candidate witness of a vertex u by
“u* candidate of u". Thus

Pr [u* candidate of u] = ¢ zyx. (13)

Euy,my

We also define a similar sampler 7, to generate the candidate witness of v. Then,

Pr [u,v have witnesses]|
> Z Pr [u* candidate of u,v* candidate of v,|E A Eyx| = |E N Eyx| = 1]

u*;ﬁ’l;* Evﬂ'u»ﬂ'v
u® v¥¢{u,v}
= Z Pr [u* candidate of u]- Pr [(uv*) ¢E ‘ u* candidate of u]
wk sy ® Euy,mu Ey,my
u® v¥¢{u,v}

x Pr [v* candidate of v]- Pr [(vu*) ¢ E ‘ v* candidate of v]

Ey,my Ey,my

x Pr [(su*) and (sv*) not active Vse V\{u,v}] (14)
E(G_{u’v})

LEMMA 2. For all u,i,j€V such that i # 7,

Pr [(ui) is not active | j candidate of u| =Pr [(ui) is not active]

Ey,my Eqy

Proof. As1—Pr[(ui) is active | j candidate of u] = Pr[(ui) is not active | j candidate of u] and
1 —Pr|[(ui) is active] = Pr[(ui) is not active|, we just need to show

Pr [(ui) is active] = Pr [(ui) is active | j candidate of u],
which is equivalent to

Pr [;j candidate of u |(ui) is active] < Pr [j candidate of u].

Ey,my Ey,my
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Two types of randomness are involved in this statement, the realization of edges E, that are incident
to u and the resampling of remaining edges E., in 7Tu(E ). Fix the realization of E,\(ui) and E.,
If j is chosen as the candidate by m, when (ui) is active, it must also be chosen when (ui) is not
active. This finishes the proof of the lemma. o
By Lemma 2, Pr [(uwv*) is not active |u* candidate of u] = Pr[(uv*) is not active]
B

Ey,muy

and Pr [(vu*) is not active |v* candidate of v] = Pr[(vu*) is not active] in (14). Furthermore,
Ey

Ey,my

%’f [(uv*) ¢ E] X Ig)f [(vu*) ¢ E] x Pr [Vs #u,v  (su®),(sv*)¢ E’]

E(G—{u,v})
H Pr [e ¢ E] H Pr [e ¢ E] > Pr [(u"s) not active Vs]- Pr [(v*s) not active Vs].
e:(sv*) E e:(su*) E E, * E x
S#U SF#EU

We also know that Pr[u* candidate of u] = ¢- x,,+ and Pr[v* candidate of v] =c-z,,*. So we can
continue the lower bound (14) on Pr|u,v have witnesses] as follows

(14) > Z ¢* + Tyux Ty Pr [(u*s) not active Vs - Pr [(v*s) not active Vs]

E E
¥ oy u¥ ¥
u* v*¢{u,v}

1-2c¢
l1—c*

LEMMA 3. For any vertex v, Pr[(rs) is not active Vs] =
Ey

Proof. Without loss of generality, we assume that neighbors of r are enumerated from 1 to k
in such a way that among all edges incident to 7, the edge (ri) appears as the i-th edge in o.
Notice that each edge (ri) is active independently with probability «,;z,;. Recall that «,; = ¢ -
Prj|r,i are unmatched at (ri)]~*. As r is matched to j with probability c¢-z,;, we have by a union
bound and induction hypothesis

Pr[r,i are unmatched at (ri)] =1 — Pr[i is matched at (ri)] — Pr [ is matched at (r7)]
B B
1—0—2 Pr[r] 1smatched]—1—c—c§ Zp;. (15)

Jj<i Jj<i

Furthermore, each edge (ri) is active independently with probability «,;z,;. Therefore, we have

k k
C-l‘ .
P N - t ti v _ 1— i) = 1_ : T ‘
Er [(ri) is not active Vi] E( Criri) E Pr|r,i are unmatched at (ri)]
k k
21—[ 1— C* Ty :Hl_C—C'ngixrj:1_0_02j<kxm21—207
i=1 1—c—czj<ixrj el 1_C_CZj<i$rj I-c 1—c

where second equality follows by the definition of ., first inequality follows by Equation (15), and
the last inequality by the fact that ngk ;<1 o

We apply Lemma 3 to further simplify the lower bound of Equation (14) on
Pr[u,v have witnesses].

2
. 1-2c
Pr [u,v have witnesses] > 2 € - Ty T - ( -

u*;ﬁv*
u® v¥¢{u,v}

—e (172) (2 e Y - Y >

s¢{u,v} s¢{u,v} s¢{u,v}
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We recall that Pr[u,v are matched at (uv)] = Pr[u,v have witnesses]. Therefore, we get the fol-
lowing bound from Equation (12).

Pr[u,v are unmatched at (uv)] >1—c¢ ( Z Tus + Z ZL‘M> + Pr [u,v have witnesses]
B
s (w0} s (w0}

21—c<§xus+zs]xm>+02-(1_26> <qu chvs Zwu xv5>> (16)

where all summations are taken over s € V\{u,v}. Note that for all s we have z,,Z,s = 0, s+ Tps <

1, as well as ), z,, <1 and ) z,, < 1. Let us find the minimum of the function f(x) &L RHS of
Equation (16). To conclude the proof it suffices to show that min, f(x) is at least the value in the
statement of Lemma 1 (where the minimum is over all positive vectors satisfying Equation (7)).

2 (1-2c\°
>1-2c4+ 5.
Fo =1 =204 - (1)

=—c+c? (2 26) (X0, wus — i) <0 for all i € V\{u,v}. Similarly,
o < O for all i€ V\{u,v}. That means that the minimum of f is achieved at a boundary point x,

(/’1
Wthh does not allow us to increase any of the x,; or x,;. The analysis proceed in two cases.

LEMMA 4.

Case (a). IfZS Tys = ), Tps = 1, then We can find a good upper bound on ) -a:ys as follows.
First, 42 Tus * Los < 42 mus (1 a:us) =1_ ,Z x? . Similarly, 42 Tus * Tops < = Z x2,.
Second, £ 3 Ty Tos < 52, 00, + 12, T2, Now if we add the last three inequalities together we
get D Tus  Tys < 3. Thus f(x) =1 —2c+c?- (2 2‘3) -(1—1), which is equal to the desired bound
in Lemma 1.

Case (b). If > x,s <1, or >, x,s <1. Then each inequality z,, + x,, <1 must be tight for
every se€ V\{u,v}. It means that >, @ys+ >, Tus = 2, (Tus +Tos) =2, 1€Z, also D Ty + D, s <
2. Therefore, Y} ys + >, Tus < 1. We get that f(x) 21 —c(X, Tus + 2, Tos) =1—c=1—-2c+ % .
(52)" o

5. Discussion In this paper we introduce a framework of batched prophet inequalities and
apply it to stochastic online matching problems. Our results demonstrate the merit of online con-
tention resolution schemes as a useful tool for generating prophet inequalities with good perfor-
mance. The new framework suggests many fascinating avenues for future work. Some of them are
listed below.

1. It would be interesting to study whether our algorithms apply to online matching problems
with other arrival models. For example, upon the arrival of a vertex, all edges from the new vertex
to all future vertices are revealed.

2. We achieve an optimal i-competitive (resp., 0.337-competitive) algorithm for vertex (resp.,
edge) arrival via OCRS. Are there pricing-based algorithms with comparable performance?

3. For both vertex and edge arrival settings, consider the random arrival order, a.k.a. prophet
secretary. For the one-sided vertex arrivals, Ehsani et al. [19] showed that the competitive ratio can
be improved to 1 — % Does it generalize to two-sided vertex arrival model?

4. In the edge arrival setting, it seems unlikely that an OCRS can be better than 0.382-selectable
due to the discussion in Section 4.2. Yet, the best upper bounds known for prophet inequality are
% and 0.420 against optimal fractional matching, and ex-ante relaxation, respectively. The gap is
fairly large and it is unclear if OCRS approach can yield tight competitive ratio.

5. This paper focuses on matching feasibility constraints. Consider studying other natural batched
prophet inequality settings, with natural structures of ordered partitions into batches.
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Appendix A: Extension to Fractional OCRS and Prophet Inequality In this section
we extend the definition of batched OCRS to fractional-batched OCRS, and extend the reduction
in Theorem 1 between batched prophet inequality against the fractional optimum and fractional-
batched OCRS.

A.1. Fractional Batched OCRS Counsider a fractional sampling scheme R that selects a ran-
dom fractional sets, i.e., vectors r € [0,1]7, where r = (r');e[r) is composed of mutually independent
samples r’ € [0,1]7¢ (recall E=| |, B,).

DEFINITION 5 (¢-FRACTIONAL-SELECTABLE BATCHED OCRS). An online selection algorithm
ALG with respect to a fractional sampling scheme R is a batched OCRS if it selects a set I; € B, at

every time ¢ such that I Lot |_|tE[T] I, € M is feasible. It is a c-batched-OCRS if:

Pr lecl;|r' =s] =c s, forall te[T],s€[0,1]", and e€ B,. (17)

The algorithm ALG is oblivious to the partition into batches and to the arrival order of the
batches. It only knows the general structure B. Thus, at time ¢, ALG chooses I; based on By,..., By,

and r',... rt

A.2. Batched Fractional Prophet Inequality For certain feasibility constraints M, it
makes sense to consider fractional optimum f-OPT(w) € [0,1]”, where f-OPT € F,, for a frac-
tional relaxation of feasibility family M and f-OPT = arg maX,.r {(w,x). The weight of f-OPT is
w(f-OPT(w)) Lot (w,f-OPT(w)) = w(OPT(w)).

DEFINITION 6 (¢-BATCHED-FRACTIONAL-PROPHET INEQUALITY). A batched-prophet inequal-
ity algorithm ALG is an online selection process that selects at time ¢ a set I, = B, such that
= |liepry I¢ is feasible (i.e., I € M). We say that ALG has competitive ratio c against fractional
optimum if

E [w(D]> - Blw(f-OPT(w))]. (18)

A.3. Reduction: Prophet Inequality to OCRS We define the fractional random sampling
scheme R(w,F) for w ~ F as follows. Let rf(w! F) &£ f—OPT(wt,va(t))|Bt7 where W) ~ F_, is

independently generated of w, i.e., r'(w',F), = f-OPT(w!,w®), for all e€ B,. Let r(w,F) ==
(r'"(w", F))err)- We notice that

1. The distribution of r(w,F) ~ R(w,F) is a product distribution over the random variables
r'(w',F).

2. Since F is a product distribution, (w?, W) ~ F.

3. Vte[T], r'(w',F) has the same distribution as f'OPT(W)‘Bf (i.e., restriction to e € B;), where
w~F.

4. For every te[T],

E [’ (W', F))] =E | (W' £OPT(w)|, ). (19)

THEOREM 5 (reduction from prophet inequality to OCRS (fractional)). For every set
B of feasible ordered partitions, given a c-batched OCRS for the fractional sampling scheme R(w,F)
with w ~ F, one can construct a batched prophet inequality c-competitive algorithm for w ~ F against
the fractional optimum.

Proof. Consider the following online algorithm:
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Algorithm 4 Reduction from c-batched prophet inequality to fractional c-batched OCRS
1: for te{l,....T} do

2:  Let w' be the weights of elements in B,

3 Resample the welghts wi) ~F_,

4:  Let r' «{-OPT(wW', W ))‘B (ie., rt = f-OPT(w!, W), for each e€ B,).
5 It<—C—OCRS(Bl,...,Bt,I'f,...,I‘t)

6: end for

7: Return I = |,y 1s

Without loss of generality, we may assume that the values of the sampling scheme are discretized,
i.e., there are only countably many values in [0,1]Pt that r' can take. Then

B WDl = Y B [w(l)]

te[T]

=X X B [w) \“S]J?g[ =]

te[T] sef0,1]B¢

= > ] E[Zw ‘Prlee ]

te[T se[0,1]Bt " |LeeBy

) [2

ri = s] Pr [rt = s]
t pt
te[T] sefo, I]Bf e€By wor

— cZ Z <w sy|r' —s]wl?’rr't[rtzs]

te[T] se[0,1] B "

w

S

2 ¢ 3 E [(w! £OPT(w)|, )| = ¢ E[(w, F-OPT(w))].

te[T]

where the third equality holds since I; and w are independent given that r'=s. o

Appendix B: Stronger Benchmarks for Batched Prophet Inequality for Matching
In this section we show that our results for both vertex and edge arrival models hold against
stronger benchmarks than the optimal integral matching. Specifically, for the vertex arrival model
we establish guarantees against the optimal fractional matching, and for the edge arrival model, we
establish guarantees against the even stronger benchmark of optimal ex-ante matching. The set of
fractional matchings y = (y.)eer can be specified by the matching polytope

Fo ==y | WeV > yun <1, Yee E y, >0}

ueV

B.1. Vertex Arrival: Fractional Optimum Let fOPT(w) <& argmaxycr (w,y) be the
optimal fractional matching. Note that

w(fFOPT(w)) 2L (w,f-OPT(w)) = w(OPT(w)).

In this section we show that our result for the vertex arrival model holds against the stronger
benchmark of f~-OPT(w), namely we can strengthen the guarantee in Definition 2 to

E [w(D)]>c E[w(t-OPT(w))].
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Let (By)e[r] be a feasible ordered partition in B““. It induces a fractional random sampling
scheme R with respect to the fractional optimum f-OPT that generates vector r(w,F) e [0,1]¥ as
defined in Section A.3. Let 25;9PT = E[r(,,)], and let x*°FT = (2£.0PT) , cp.

uv

Observe that for any edge (uv), 25,9°T = E[f-OPT(W) 4], where w ~ F. Therefore, x*°PT e F,
(recall that F , ={y | VveV > ., Yw <1, Ve€e E y.>0}). We also observe that

Z r(,,, <1 forevery veV and every realization r” € [0, 115, (20)

u<v

since r’ is a projection of a fractional matching on B,,.

With these two properties, in Appendix C we construct a %—batched fractional OCRS for vertex
arrival model, which implies a %—batched fractional prophet inequality for the maximum fractional
matching.

B.2. Edge Arrival: Ex-ante Optimum As was previously observed by [41], for the special
case in which each batch consists of a single element, one can provide the guarantees with respect to
the stronger benchmark of the optimal ex-ante solution. The optimal ex-ante solution y is defined
as follows:

e
We

y = argmaxz E [w.|w. > F'(1-y.)] -y subject toyeF,,.

Let Re—nte(w,F) = {e|w. = F, (1 —y.)}.

By definition, the distribution of R**~*"¢(w,F) is a product distribution of R*~*"*(w,, F,).
Therefore, any ¢-OCRS with respect to R**~%"¢(w,F) gives us a prophet inequality algorithm with
competitive ratio ¢ with respect to the optimal ex-ante solution. Specifically, our 0.337-OCRS from
Section 4 when applied to R®*~*"*¢ implies a 0.337-competitive algorithm for the prophet inequality
problem against the ex-ante optimum. Unfortunately, the reduction from general batched prophet
inequalities to batched OCRSs does not work for ex-ante benchmark. E.g., it does not even work

for the vertex arrival setting of our paper.

Appendix C: A 1/2-Batched OCRS for Fractional Matching with Vertex Arrival In
what follows we extend our construction from Section 3 to a 1/2-batched fractional OCRS for vertex

arrival. Let r = (r!,...r!"l) be independent random variables over [0,1]%:. Let x,, = E[r{,,], and

X = (xuv)(uv)eE~
We write u < wv if vertex u arrive before vertex v.

THEOREM 6. If r satisfies the following two conditions:

quv <1 for everyveV (21)

Z Iy <1 for every veV and every realization r* € [0,1]% (22)

u<v

Then, r admits a 1/2-batched fractional OCRS for the BY* structure of batches..

Note that r as defined in Appendix B for the vertex arrival model satisfies Equations (21),(22).
Proof. Upon the arrival of a vertex v, we compute a,(v) for every u < v as follows:

def 1 1 (21
def < <1 23
2— Zz<v Luz 2— Zz Luz ( )

Note that a,(v) cannot be calculated before the arrival of v. We claim that the following algorithm
is a %—batched fractional OCRS with respect to r:

(V)
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Algorithm 5 1/2-batched fractional OCRS for vertex arrival

1: forve{l,...,|V|} do

2:  Calculate z,, = Pr[(uv) € R] for all u,z <v and «a,(v) for all u <wv.

3:  Among all unmatched u < v, choose one u (or none) with probability rf,, - @.(v).
4:  If u was chosen, then match (uv).

5: end for

We first show that Algorithm 5 is well defined; namely, that (i) Algorithm 5 matches not more
than one edge incident to u and v, and (ii) for every v, we can match each available vertex u < v
with probability rf,, -, (v). The worst case is where all previous vertices are available. Thus, a

sufficient condition is that 3, _, r{,,) - @.(v) < 1. Indeed,

It remains to show that Algorithm 5 is a 1/2-batched fractional OCRS with respect to r. We
prove that Pr[(uv) is matched] = %= by induction on the set of vertices V, according to their
arrival order. The base of the induction (V = &) holds trivially. For the induction step, assume that
Pr((uz) is matched| = #2= for all u,z <v. We show that Pr[(uv) is matched] = *#= for all u < v.

In what follows, we say that “u is unmatched at v" if u is unmatched right before v arrives.

1
Pr [u is unmatched at v| =1 — Pr|(uz) is matched| =1— = ) x... 24
[ | ; [(uz) | 5 ; (24)
Therefore,
Pr[(uv) is matched] = Pr[u is unmatched at v] - E[r{,,, - a.(v)]
(23),(24) 1 1
= 1—- Loz o= T Tww
< 2 ;J ) 2—> _,Tu:
_ x?l/l)
= =5

To conclude the proof that Algorithm 5 is a %—batched fractional OCRS with respect to r, we show
that for every u < v and every [0,1]5
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Pr [(uv) € I, | r" = s] = Pr [u is unmatched at v] - S(yy) - 00 (V)

(23),(24) 1 1 S (uv)
= 1—-—- uz | ° *D(uv) = .
2 ;):r ) 2_Zz<v Luz S( ) 2 ’

Appendix D: Upper Bounds for Matching Prophet Inequality In this section we
present upper bounds on the competitive ratios for matching prophet inequality with edge arrival,
with respect to the fractional and ex-ante optimal solutions. Note that the 1/2 competitive ratio
with respect to the classical prophet inequality extends trivially to matching prophet inequality (for
both vertex and edge arrival models), implying that our 1/2 competitive ratio for vertex arrival, as
implied from Section 3, is tight. The following propositions give upper bounds on the competitive
ratio of prophet inequalities for matching with edge arrival. Proposition 1 gives an upper bound with
respect to the optimal fractional matching, and Proposition 2 gives an upper bound with respect to
the optimal ex-ante matching (see definition below).

PROPOSITION 1. Under the edge arrival model, no online algorithm can get better than 2 of

7
~-OPT, even for 6-vertex graphs.

Proof. Consider the graph depicted in Figure 1(a) with 6 vertices a,b,c,d, e, f, where edges (ab),
(be), (ac), and (de), (ef), (df) have a fixed weight of 1, and all other 9 edges have weight -~ with
probability e (for an arbitrarily small €), and 0 otherwise. We refer to the latter edges as the big
edges. Suppose the 6 fixed edges arrive first, followed by the big edges.

The optimal fractional solution is the following: if there exists a big edge (this happens with
probability 9¢ + O(€?)), then take it; else take each of the fixed edges with probability 1/2. This
approximately gives us 9= + (1 —9¢)3 = 2.

We next show that any online algorithm gets at most %, resulting in a ratio of %, as claimed. An
online algorithm can choose to select either 0, 1, or 2 fixed edges, without knowing the realization
of the big edges. If it chooses 0 fixed edges, it gets ~ Qeﬁ = % If it chooses 1 fixed edge, it gets
~ 1+ 3¢ =7 If it chooses 2 fixed edges (one from each triangle), it gets ~ 2 + e = 2. This

completes the proof. o

FI1GuRE 1. Upper bounds for matching prophet inequality with edge arrival. (a) upper bound w.r.t. optimal fractional
matching. Solid lines have weight 1; dotted lines have weight 1/4e w.p. e. (b) upper bound w.r.t. optimal ex-ante
matching. Solid lines have weight 1 w.p. 1/2; dotted lines have weight 15/62¢ w.p. e.

A stronger benchmark than the optimal fractional matching is the optimal ex-ante matching
y €]0,1]¥, defined as follows:

y= argmaxz E,., [we | we = F7 11— ye)] Yo subject to yeF,,

ex-ante-OPT(F) = Y By, [w, | w. > F, ' (1-y.)].

€

The following proposition gives an upper bound with respect to the optimal ex-ante matching.
Note that our lower bounds for edge arrival apply also with respect to the optimal ex-ante solution
(see Section B.2).
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PROPOSITION 2. Under the edge arrival model, no online algorithm can get better than 35 of

321
ex-ante-OPT, even for G-vertex graphs.

Proof. Consider the graph depicted in Figure 1(b) with 6 vertices a b,c,d,e, f, where edges (ab),
(be), (ac), and (d ) (ef), (df) have a weight of 1 with probability 1 and 0 otherwise. All other 9
edges have weight > with probability € (for an arbitrarily small €), and 0 otherwise. We refer to the
latter edges as the big edges. Suppose the edges (ab), (bc), (ac) arrive first, followed by the edges
(de), (ef), (df), and only then the big edges arrive.

The optimal ez-ante solution is the following it takes the big edges with probability € and the
other edges with probability of approximately % 5- This gives approximately a value of 96 - +3= ‘321

We next show that any online algorithm gets at most <2, resulting in a ratio of ;;i’, as clainied
An online algorithm can choose to select either 0 or 1 edges from the set {(ab),(bc),(ca)} without
knowing the realization of the big edges. If it chooses none of the edges (ab),(bc),(ca), it gets
29e- 2241 Inax(96 6125 1436 52)+0(e ) =25 1+ 0(e). If it chooses one edge from {(ab), (bc), (ca)},
it gets ~ 1 + L.3e.- 2241 Inax(3e62 1+ex ) + O(e) = X2 + O(e). This completes the proof. o
In Appendix G We eqtablish an 1mproved upper bound for the setting of multigraphs.

Appendix E: Other definition of batched-OCRS: bad example Here, we discuss why a
natural generalization of the previous OCRS for singletons to batched-OCRS in which one simply
requires that Prp ;[e€ I] > c¢- z. instead of Equation (1) might be problematic. In particular, the
standard reduction from a c-selectable OCRS to c-competitive prophet inequality ([23]) might not
work in the batched setting for such definition of c-selectable batched-OCRS.

The problem with the standard reduction in batched settings is that there might be a dependency
between the realized set and its weight. Our more complex approach (Equation (1)) requires the
appropriate condition to hold for every realized set, thus allows us to account for the weight given
any realized set.

To illustrate this point, consider the following example with 4 elements {1,2, 3,4} and the down-
ward closed family of feasible sets {{1,3},{1,4},{2,3},{2,4},{3,4},{1},{2},{3},{4},9}, i.e., the
maximal feasible sets have all possible 2 element subsets of {1,2,3,4} except the subset {1,2} (which
is a matroid). The elements arrive in two fixed batches: By = {1,2} and By = {3,4}. We also consider
a respective Prophet Inequality setting, in which all elements have weights independently distributed
according to w ~ F = Hle F;, where

Fi=F: Pr lw=e¢]=1 and Fy;=F,: Pr [w=1]=0.5, Pr [w=0]=0.5,
w~Fy w~Fy w~Fy
for some very small €. The optimum solution OPT(w) picks the set {3,4} if w3 = w,; =1, and
otherwise picks a set of size 2 with exactly one element among {1,2} and the larger element among
{3,4}. The expected weight of the optimum is

E_[w(OPT(wW)] = E_[ws]+ E_[w]+0(e)=1+0().

The standard sampling scheme R = R; L1 R, for the reduction from the Prophet inequality to OCRS
observes the weights in the current batch and resample the weights of the remaining elements
w® ~ F_,; then it takes the set R, = B, n OPT(w', w®) for te {1,2}. In our case,

{1}  with probability
Ry =<{2} with probability
%] with probability

{3} with probability
Ry, =< {4} with probability
{3,4}  with probability

W= 00w oolw
W= 00w olw

The marginal probability of the elements to be sampled in R are as follows:

3 )
xlzPr[leR]::UQ:g x3:Pr[3ER]=:U4=§.
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For such a sampling scheme R one can achieve a pretty good c-selectable OCRS with ¢ = é—g, by
following a simple greedy algorithm that includes as many elements from R; into a feasible set [
as it can at each stage ¢. In particular, this greedy OCRS would always select elements 1 and 2,

whenever 1, or 2 are included in Ry, i.e.,

Eg‘[lel]zgg'[leR]:xl E§[2€I]=E¥[2€R]=x2.

Sometimes greedy algorithm won’t be able to take both 3 and 4 into [ if R; # &, in which case it
will flip a coin and take one of the 3 or 4 uniformly at random. Thus to calculate Pr[3 € I] (similarly
Pr[4€I]) we consider two cases R; =@ and |R;| =1 and get

Pr[3el]=Pr[R, = 2]- (Pr[R2={3,4} | Ry = @] +Pr[Ry={3} | R1=®]>

#PrlIRi| =11 (5 Prif = (3.4) | 1Rl = 1]+ Pr (R = (3} | [Ra| =1]

_L(1,3) 3 (11 3\ 17 175 17
"1 \178) a4 \274a"8) T2 208 20
Now, if we try to convert this greedy %—selectable OCRS into a prophet inequality algorithm ALG
that selects a set I with the matching marginal probabilities Pr;[1 € I] = Pr;[2€ I] = 2, then its
17

competitive ratio will be noticeably smaller than ;. Indeed,

EI[ALG(W)] =Pr[InB, =9]: EI[wg +wy | I n B =g]
+Pr[|[InB|=1]: EI [max(ws,wy) | |[I N By =1]+O(¢)

= i -W]E)F [ws +wy] + Z -w}iJF [max(ws,wy)] + O(e)
:i.(E[wB]+E[w4])+%-1-Pr[w3:1 or wy = 1]+ O(e)
= 14 240 = 1+ 0(e) = (12 +o<e>) . E_[W(OPT(w))],

i.e., the corresponding algorithm is only %—competitive, while we would like to have c-competitive

algorithm with the same ¢ = ;—g as the c-selectable OCRS we constructed before.

1

Appendix F: Pricing Approach: ; upper bound In this appendix we present a natural
extension of the pricing-based algorithm of Feldman et al. [21] to the case of two-sided vertex arrival
in bipartite matching, and show that it does not achieve a competitive ratio better than i. Upon
arrival of a vertex v, the algorithm sets its price p, to be a half of the expected future contribution
(to the optimum matching) of future edges incident to v. It then considers an edge (uv) only if its
weight covers the sum of the prices of its end points (i.e., wy,, > Py + po). Among those, it chooses
the one that maximizes w,, —p, — p,. This algorithm appears as Algorithm 6 below, where OPT(w)
denotes the max-weight matching under weights w, and u < v denotes that vertex u arrives before
vertex v.

Algorithm 6 Dynamic Pricing Algorithm
Let p, = %Zwv Ew~r[w., - I[(uv) € OPT(w)]].

Let ke arg maXu<U,u unmatched{wuv - pu}
If Wy, — pu = Dy, then include (vk) in the matching.

The example depicted in Figure 2 shows that the competitive ratio of Algorithm 6 is at most

1. In this example, the expected maximum weight matching is 4 — ﬁe (by taking edge (cd) if
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weq > 0, and taking (ac) otherwise). Suppose the arrival order is a,b,c,d. The prices calculated
according to Algorithm 6 under this arrival order are p, = iz,pb =0,p. =1,ps = 0. Given these
prices, Algorithm 6 always chooses the edge (bc), which gives approximately i of the expected

maximum weight matching.

2/ew.p. €
Owp.1—¢€

FIGURE 2. An upper bound of 1/4 on the pricing-based algorithm (Algorithm 6) for max-weight matching with two-
sided vertex arrivals.

Appendix G: Extending to Multigraphs In this section we study multigraphs in the edge
arrival model. We first show that our positive results (i.e., lower bounds) for simple graphs extend
to multigraphs. We then establish a stronger hardness result for multigraphs with respect to the
optimal fractional solution.

We first claim that Theorem 3 holds also with respect to multigraphs. The proof holds almost
intact, except that x. adjusted accordingly. We present the proof here for completeness.

THEOREM 7. There is a %—OC’RS for matching in general multigraphs with edge arrivals.

Proof. Let ¢ = % We prove that all o, < 1 for every edge e by induction on the set of edges,
according to their arrival order. For the base case (an empty set), the argument holds trivially. We
next prove the induction step. We can assume by the induction hypothesis that oo <1 for every
edge ¢’ € E but the last arriving edge e = (uv). To finish the induction step we need to show that
a. < 1. Recall that our algorithm matches each edge €’ preceding e = (uv) with probability ¢ x.
Therefore,

Pr [u is matched at e = (uv)] = Z cry <c and Pr[vis matched at e = (uv)] = Z cxTe <.
e’ <eruce! e/ <ewee!

By the union bound, we have
Pr [u,v are unmatched at e = (uv)] = 1—Pr [u is matched at e = (uv)] —Pr [v is matched at e = (uv)] = 1—2c.

For ¢=1/3, 1 —2c = c. Thus,

c
Pr [u,v are unmatched at e= (uv)] > ¢ and  ae(uo) = Pr[u,v are unmatched at ¢ = (u0)] <1,

as desired. This concludes the proof. o

We next claim that Lemma 1 holds with respect to multigraphs, and thus Theorem 4 as well. The
proof of Lemma 1 holds almost as is, except that now there may be multiple edges between u and
v. As a result, in Equation (16), we need to separate the edges into ones that are of the form (u,v)
and ones that are not. For edges of the latter form, the analysis remains intact. Having multiple
edges of the form (u,v) introduce positive correlation for u and v being matched simultaneously.
Since our analysis works by establishing lower bound on the positive correlation for v and v being
matched simultaneously, having multiple edges of the form (u,v) works in our favor.

We next present an improved upper bound for multigraphs (with respect to the optimal fractional
solution).
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ProPOSITION 3.  For multigraphs, under the edge arrival model, no online algorithm can get
better than % of F-OPT, even for S-vertex multigraphs.

Proof. Consider the graph depicted in Figure 3 with 3 vertices a, b, ¢, where edges (ab), (bc), (ac)
have a deterministic weight of 1, and the second edge from a to b has a weight % with probability
€ (for an arbitrarily small €), and 0 otherwise. We refer to the latter edge as the big edge. Suppose
the three deterministic edges arrive first, followed by the big edge.

The optimal fractional solution is the following: if the big edge’s weight is non-zero (this happens
with probability €), then take it; else, take each of the deterministic edges with probability 1/2. This
gives approximately e% +(1— e)g ~ % One can easily verify that no online algorithm can achieve
more than weight 1. o

Ficure 3. Upper bound for matching prophet inequality with edge arrival with respect to optimal fractional matching
in multigraphs. Solid lines have weight 1; the dotted line has weight 1/e¢ w.p. e.
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