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1 Introduction

In this paper we consider undirected graphs and hypergraphs. We denote by
V (G) the vertex set of a graph G and the edge set by E(G). Notations v(G)
and e(G) in our paper stand for the number of vertices and edges respectively.

We denote by dG(v) the degree of vertex v ∈ V (G) in G. We denote
by δ(G) and ∆(G) the minimal and maximal vertex degrees of G respectively.
We use similar notations (V (H), E(H) and dH(v)) for a hypergraph H. In
this work it is convenient for us to deal with edges and hyperedges in terms
of vertex subsets of a graph or a hypergraph.

We denote the neighborhood of vertex v in G (i.e., the set of all adjacent
to v vertices of G) by NG(v).

For any set W ⊂ V (G) we denote by G(W ) the induced subgraph of G
on W (i.e., the subgraph on W that contains all edges of G with two ends
in W ).

There are several ways to generalize the notation of proper coloring on
hypergraphs. For example, strong vertex colorings [1], in which all vertices
in every hyperedge have to receive different colors. In the present paper we
work with the definition proposed by P. Erdős.

Definition 1. A vertex coloring of a hypergraph H is called proper coloring,
if any hyperedge contains at least two vertices of different colors.

In the field of colorings of ordinary graphs many natural questions are
still left open. Thus, it is not surprising that vertex colorings of hypergraphs
are not well studied. One particular question in the field of hypergraph
colorings that has received great attention in the literature (see [4, 5, 6, 7,
8, 10, 11, 12, 13]) is the problem of finding a n-uniform hypergraph with
the minimal number of edges mk(n) that admits no proper vertex k-coloring.
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Another problem closely related to the one cited above is the question “what
is the minimal n, such that every n-uniform and n-regular hypergraph (i.e.,
a hypergraph with all edges containing n vertices and all vertices having
degree n) admits a proper vertex 2-coloring?” It was shown (see [3]) by means
of Lovasz local Lemma and other probabilistic methods, that for n ≥ 9 every
such graph is 2-colorable. Alon and Bregman [2] improved this statement
to n = 8, and Thomassen [14] has shown finally 2-colorablity for all n ≥ 4.

The following theorem is the main result of our paper.

Theorem 1. Let H be a hypergraph of maximal vertex degree ∆, such that
each its hyperedge contains at least δ vertices. Let k = d2∆

δ
e. Then the

following statements hold.
1) The hypergraph H admits proper vertex coloring in k + 1 colors.
2) The hypergraph H admits proper vertex coloring in k colors, if δ ≥ 3

and k ≥ 3.

Our theorem gives weaker results than the works cited above, when the
minimal size of hyperedge is close to the maximal vertex degree of considered
hypergraph. However, for relatively small values of δ with respect to ∆ the
statement of our theorem becomes interesting. Our proof uses only classic
combinatorial methods.

From our main theorem we derive results on dynamic vertex colorings.

Definition 2. A vertex coloring of a graph G is called dynamic, if any
vertex v of degree at least 2 has at least two vertices of different colors in its
neighborhood.

We note that some papers (e.g., [9, 15, 16]) study proper dynamic color-
ings. There it was shown the existence of a proper dynamic vertex coloring
of G in ∆(G)+1 colors [9] and in ∆(G) colors [16] besides explicitly described
series of exceptions. In the current paper we do not require a dynamic col-
oring to be a proper coloring and obtain the following result.

Theorem 2. Let G be a graph, k = d2∆(G)
δ(G)
e. Then the following statements

hold.
1) The graph G admits a dynamic vertex coloring in k + 1 colors.
2) The graph G admits a dynamic vertex coloring in k colors, if δ(G) ≥ 3

and k ≥ 3.
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2 Hypergraph’s Image and Alternating Chains

We further introduce some notions which are important for the following
proof of our main result.

Definition 3. We call any graph G (with possible multiple edges) by an
image of a hypergraph H, if

(i) V (G) = V (H);
(ii) there exists a bijection ϕ : E(G) → E(H), such that e ⊂ ϕ(e) for

every edge e ∈ E(G).
We call ϕ by the bijection of image G.

Remark. We consider multiple edges of a graph-image G that corresponds
to distinct hyperedges of the hypergraph H as distinct edges.

As in some classic theorems about vertex colorings, we make use of al-
ternating chains. Next definition will show what we mean by this notion for
hypergraphs.
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Figure 1: Alternating chain of length 5 with beginning a0 and end a5.

Definition 4. Let δ ≥ 3 and let G be an image of a hypergraph H. We
consider a sequence of vertices a0b0a1b1 . . . an of H, satisfying the following
conditions.

• For each i vertices ai, bi, ai+1 are different.

• There exist different hyperedges e0, . . . , en−1 ∈ E(H), such that

– aibi ∈ E(G) and ϕ(aibi) = ei,

– ai, bi, ai+1 ∈ ei.

Then a0b0a1b1 . . . an is an alternating chain from a0 to an. We say that it
has length n and that it goes through the vertices a0, b0, . . . , an and through
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the edges a0b0,. . . , an−1bn−1. We say that this chain begins at a0 and ends at
an.

For two sets X, Y ⊂ V (G) with a0 ∈ X and an ∈ Y , we say that
a0b0a1b1 . . . an is an alternating chain from X to Y .

Remark. 1) We allow the case n = 0 in the definition of alternating chain,
that is a0 is an alternating chain from a0 to a0 of length 0.

2) Since ϕ is a bijection, then edges a1b1, . . . , anbn due to the definition
of alternating chain are all different. We recall here that multiple edges cor-
responding to different hyperedges of G are considered as different edges.

3) Vertices are not necessarily different. An alternating chain may go
through some vertices more than once.

Lemma 1. Let H be a hypergraph of maximal vertex degree ∆, such that
each hyperedge of H contains at least δ vertices. Let k = d2∆

δ
e. Then there

is an image G of H with ∆(G) ≤ k.

Proof. Consider a trivial case δ = 2. In this case for any image G of
the hypergraph H it is clear, that ∆(G) ≤ ∆ = k. In what follows we
assume δ ≥ 3.

For a graph H we denote by Vk+1(H) the set of all its vertices of degree
at least k + 1. We denote by sk+1(H) the sum of degrees in the graph H
taken over vertices of Vk+1(H).

For the sake of contradiction, we assume that the statement of lemma
fails. Then for any image H we have Vk+1(H) 6= ∅ and sk+1(H) > 0. Let G
be an image with the minimal sk+1(G). We denote by ϕ the bijection of G,
and we set S = Vk+1(G).

Let U be the set of vertices of G that consists of all possible ends of
alternating chains with the beginning in S. We set F = G(U). Clearly,
U ⊃ S. In the next we observe some properties of U .

1. For any edge e ∈ E(F ) the hyperedge ϕ(e) ⊂ U .
Suppose the contrary. Then e = uw ∈ E(F ) and the hyperedge ϕ(e) contains
a vertex v 6∈ U (see figure 2a). In the following we construct an alternating
chain from S to v and, therefore, show that v ∈ U . The latter contradicts
our assumption.

We consider the shortest alternating chain P = a0b0 . . . an from S to {u,w}.
Without loss of generality we may assume that an = u. Then ai /∈ {u,w}
for any 0 ≤ i < n. Hence P does not go through e = uw. We add to P
vertices w, v and obtain an alternating chain from a0 ∈ S to v.
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2. If a vertex u ∈ U is adjacent to a vertex v /∈ U , then all the vertices
of the hyperedge ϕ(uv) except v belong to U .
Let u ∈ U , v /∈ U , uv ∈ E(G), and e = ϕ(uv) be a hyperegde of H. Suppose
the contrary. We assume that e contains a vertex w /∈ U (see figure 2b).

As in the previous item, we construct the shortest alternating chain P
from S to u (in the case u ∈ S this chain consists of one vertex). Let P
goes through the edge uv. Since we have chosen the shortest chain to u, we
have v = ai, u = bi for some i < n. Then we have v ∈ U and we arrive at a
contradiction.

Thus the chain P does not go through the edge uv. We add v and w
to P and obtain w ∈ U , that contradicts our assumption. Hence v is the
only vertex of the hyperedge e that does not belong to U (see figure 2c).
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Figure 2: Hyperedges, intersecting U .

3. For any vertex u ∈ U we have dG(u) ≥ k.
Let u ∈ U and dG(u) ≤ k − 1. Clearly, u /∈ S. Consider an alternating
chain P = a0b0 . . . an from S to u = an. We construct a new graph G′:
take the graph G and for every i ∈ [0, n − 1] replace in the hyperedge ei ⊃
{ai, bi, ai+1} the edge aibi by the edge biai+1. It is easy to see that resulting
graph G′ is also an image of the hypergraph H.

Since dG′(u) = dG(u) + 1 ≤ k, then u 6∈ Vk+1(G′). For any other vertex x
we have dG′(x) ≤ dG(x). Hence Vk+1(G′) ⊆ S = Vk+1(G). It remains to
notice that a0 ∈ S and dG(a0) > dG′(a0), consequently, sk+1(G′) < sk+1(G).
We obtain a contradiction with the minimality of sk+1(G).

4. We estimate the sum of degrees in the hypergraph H taken over vertices
in U .
Let u1, . . . u` be all vertices of U that have degrees less than k in the induced
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subgraph F = G(U). We set

ti = dG(ui)− dF (ui), t =
∑̀
i=1

ti.

The degree of any vertex of U in G is at least k due to item 3. Since S ⊂ U ,
the set U contains vertices that have degrees more than k in G. Hence

e(F ) =
1

2

∑
u∈U

dF (u) >
k|U | − t

2
.

We further estimate m =
∑

u∈U dH(u). By item 1, all hyperedges of H that
correspond to the edges of F (i.e. of the set ϕ(E(F ))), are contained in the
set U and contribute to m at least

δ · e(F ) > δ · k|U | − t
2

≥ ∆|U | − δt

2
.

Now we consider t edges of G between U and V (H) \ U . According to
item 2 each of these edges is contained in a hyperedge of H, which has only
one vertex outside U , and, consequently, which has at least δ − 1 vertices
in U . We note that all these t hyperedges are different. Thus

m > ∆|U | − δt

2
+ (δ − 1)t > ∆|U |.

Hence there is a vertex u ∈ U of degree dH(u) > ∆, that contradicts to the
conditions of the lemma.

The obtained contradiction shows that there exists an image G of H
with ∆(G) ≤ k.

3 Proofs of Theorems 1 and 2

Proof of theorem 1. 1) We pick an image G of H with ∆(G) ≤ k = d2∆
δ
e,

which exists due to the lemma 1. Clearly, there exists a proper vertex coloring
of the graph G in k + 1 colors.

We need to show that this coloring is a proper vertex coloring of the
hypergraph H. Let ϕ be the bijection of the image G. For every hyper-
edge e ∈ E(H) we have ϕ−1(e) ⊂ e, and, therefore, two vertices of ϕ−1(e) ⊂
E(G) have different colors.
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2) To prove the second statement it suffices to find an image of the hy-
pergraph H that has a proper vertex coloring in k colors for k ≥ 3 and δ ≥ 3.
At first we consider an image G of H with ∆(G) ≤ k and its bijection ϕ.

We remind the classic Brooks theorem: if ∆(G) ≤ k, k ≥ 3, and no
connected component of G is a clique on k + 1 vertices, then G has a proper
vertex coloring in k colors.

Let G have connected components that are cliques on k + 1 vertices. We
enumerate them all by C1,. . . , Cq (for conciseness, we will refer to these
components simply by cliques). Graph G can possibly have other connected
components. We denote by Dq+1, . . . , Dp induced subgraphs on these com-
ponents. In what follows we correct the graph-image G, such that obtained
graph would have proper vertex coloring in k colors.

Image transformation.
Consider an arbitrary edge uiwi in each clique Ci. It is clear that there is
a vertex vi ∈ ei = ϕ(uiwi) different from ui and wi. We construct the new
image G′ of H, by replacing simultaneously every edge uiwi by the edge uivi.
We call the edges u1v1, . . . , uqvq by new edges.

Further we prove that G′ has a proper vertex coloring in k colors.
We construct an auxiliary digraph F : vertices of F are connected compo-
nents of G, from each component-clique Ci an oriented edge (arc) leads to a
component that contains vi. If vi is a vertex of the clique Ci, then this arc
will be a loop. In fact, in order to construct F from G′, one could orient the
new edges and contract each connected component of G into a vertex.

Our algorithm for coloring vertices in k colors works according to the
following plan:

— if there exists a clique that has no incoming arc in F , we perform
Step 1 and return to the beginning of the algorithm;

— if each clique has at least one incoming arc in F , then we perform
Step 2 and terminate the algorithm.

1. There is clique Ci that has no incoming arc.
In this case dG′(wi) = k − 1. We enumerate vertices of Ci starting from wi
and finishing at the vertex ui that is adjacent in G′ to a vertex of another
connected component of G. We assume that vertices of the rest components
are properly colored in k colors. Then we can color vertices of Ci in the
reverse order (respect to their numbers): at each step we take a vertex that
is adjacent to less than k already colored vertices and we color it in any
remaining color.
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Therefore, we can delete from G′ all vertices of the component Ci and
continue by coloring the remaining graph G′ − Ci. In addition, we change
the graph F . We delete from F vertex Ci and the arc going from Ci.

2. Every component-clique has an incoming arc.
Since exactly one arc goes from each clique, then exactly one arc comes into
each clique. Thus all cliques in F are divided into several oriented cycles,
which vertices are not adjacent to each other in G′. We color these cycles
independently. The rest connected components of G (not cliques on k + 1
vertices) are the same connected components in G′. Due to Brooks theorem
their vertices can be properly colored in k colors.

Now we have cliques C1, . . . , C` forming in F an oriented cycle. We denote
by G∗ the induced subgraph of G′ on the union of all these cliques. It remains
to prove that G∗ has a proper vertex coloring in k colors. If ∆(G∗) ≤ k, then
it follows from Brooks theorem, since the graph G∗ is connected and is not
a clique on k + 1 vertices. Assume, that ∆(G∗) > k and consider two cases.

2.1. ` = 1, i.e. our cycle is a loop and v1 ∈ V (C1).
Then G∗ is a clique on k + 1 vertices with deleted edge u1w1 and edge u1v1

of multiplicity two. Clearly, G∗ has a proper coloring in k colors: we color u1

and w1 in the same color, and we color each other vertex in its own color.

2.2. ` ≥ 2.
Let G∗ have a vertex x of degree more than k and x belongs to the clique Ci.
Clearly, x is adjacent to a vertex of the clique Ci−1 and x 6= wi. Moreover,
in this case dG(wi) = k − 1. We can delete the vertex wi from G∗, since
we can color this vertex after coloring the rest vertices. If x 6= ui, then x
is adjacent to wi, hence, all remaining vertices of Ci have degrees not more
than k in G∗ − wi (see figure 3a).
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Ci

CiCi-1 +1
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b

b
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CiCi-1 +1
=

b

y

Figure 3: Coloring of the clique Ci in the graph G∗.

If x = ui, then there is another vertex y in Ci−w and dG∗−wi
(y) = k− 1.

We delete y from the graph (after coloring all other vertices in k colors we can
easily color y). Clearly, in the graph G∗ − wi − y the degrees of all remaining
vertices of Ci do not exceed k (see figure 3b).
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We perform such operations with all components-cliques that have in G∗

a vertex of degree more than k. As a result we obtain a connected graph H∗

with maximal degree not exceeding k.

We prove that H∗ is not a clique on k + 1 vertices.
It is clear from the construction that all new edges between the compo-
nents C1, . . . , Cn remain in H∗ after deletion described above (we have not
deleted none of their ends from G∗). We consider a component C2 and two
new edges u1v1 and u2v2, incident to vertices of C2. Clearly, the graph
H∗ − u1v1 − u2v2 is disconnected (C2 is separated from the rest vertices of
the graph). Thus H∗ becomes disconnected after deleting two of its edges,
and, hence, it can’t be a clique on k + 1 ≥ 4 vertices.

Applying Brooks theorem we get a proper k-coloring of H∗. After that we
can add back all deleted from G∗ vertices and color them properly in reverse
order to their deletion.

Thus the graph G′ admits a proper k-coloring and this coloring, as it was
mentioned above, provides a proper vertex coloring of the hypergraph H.

Proof of theorem 2. We construct the following hypergraph H. Its vertex
set V (H) coincides with V (G); set of hyperedges E(H) consists of neighbor-
hoods NG(v) of all vertices v ∈ V (G). Each hyperedge of H has the size at
least δ(G) and each vertex of H belongs to not more than ∆(G) hyperedges.
Now it is easy to see, that the statement we are proving is an immediate
consequence of theorem 1 applied to the hypergraph H.
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