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Abstract. We study a combinatorial market design problem, where a collection of indivisible
objects is to be priced and sold to potential buyers subject to equilibrium constraints. The classic
solution concept for such problems is Walrasian Equilibrium (WE), which provides a simple and
transparent pricing structure that achieves optimal social welfare. The main weakness of the WE
notion is that it exists only in very restrictive cases. To overcome this limitation, we introduce the
notion of a Combinatorial Walrasian equilibium (CWE), a natural relaxation of WE. The difference
between a CWE and a (non-combinatorial) WE is that the seller can package the items into indivisible
bundles prior to sale, and the market does not necessarily clear.

We show that every valuation profile admits a CWE that obtains at least half of the optimal
(unconstrained) social welfare. Moreover, we devise a polynomial time algorithm that, given an
arbitrary allocation, computes a CWE that achieves at least half of its welfare. Thus, the economic
problem of finding a CWE with high social welfare reduces to the algorithmic problem of social-
welfare approximation. In addition, we show that every valuation profile admits a CWE that extracts
a logarithmic fraction of the optimal welfare as revenue. Finally, to motivate the use of bundles, we
establish strong lower bounds when the seller is restricted to using item prices only. The strength of
our results derives partly from their generality — our results hold for arbitrary valuations that may
exhibit complex combinations of substitutes and complements.
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1. Introduction. Recent years have been marked by an explosion of interest
in the role of computer science theory in market design. Large-scale, computer-
aided combinatorial markets are becoming a reality, with the FCC spectrum auctions
emerging as a front-running example [3]. The potential outcome of this line of work is
a system in which many bidders, each having complex preferences over combinations
of items for sale, can express these preferences to an auction resolution algorithm that
decides an appropriate outcome and payments. Spurned forward by this vision, the
computer science community has generated an entire subfield of work on developing
efficient algorithms for combinatorial allocation problems [1, 18,21,35,37,41].

Much of the existing work on combinatorial auctions has focused on the desider-
atum of incentive compatibility, where bidders are incentivized to report their prefer-
ences truthfully to an auction resolution mechanism. It is our view, however, that the
connection between computational requirements and combinatorial market design is
much broader than the design of incentive compatible mechanisms, and combinatorial
extensions of complex markets are fundamental in a wider context. In this paper we
study a classic market design problem: setting prices so that socially efficient outcomes
arise when buyers select their most desired sets. We propose a natural combinatorial
extension of this problem, whereby the seller can choose to bundle objects prior to
assigning prices. We demonstrate that providing this basic operation to the seller
leads to the existence of (and algorithms to find) near-optimal outcomes in settings
that were previously known to suffer from severe limitations.

Background: Walrasian Equilibrium. A vast literature in economic theory is dedi-
cated to methods of assigning prices to outcomes so that a market clears in equilibrium
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and a socially efficient outcome arises. Suppose that we have a single seller1 with a
set M of m items for sale, and there is a set N of n buyers who have possibly complex
preferences over the items, represented by a valuation function vi(·) : 2M → R≥0 that
maps every subset of M to a real value. A strong notion of a pricing equilibrium for
such a market is as follows. First, the seller sets prices {pj}j∈M on the items for sale.
Second, each buyer selects his most-desired set of items at those prices, i.e., a set S in
argmaxS vi(S)−

∑
j∈S pj . If no item is desired by more than one bidder (i.e., there is

no over-demand), and all items are sold (i.e., there is no over-supply), this outcome
is known as a Walrasian equilibrium (WE).

The WE solution concept is appealing: despite competition among the agents,
every buyer is maximally happy with her allocation, the market clears, and the pricing
structure is natural, simple, and transparent. Moreover, it is known that a WE, when
it exists, is socially efficient; i.e., it maximizes social welfare — the sum of buyers’
valuations [7]. The main disadvantage of WE is that the concept is “too good to be
true” — it is known to exist only for an extremely restrictive subset of sub-modular
valuations, known as gross substitutes [30]. Since a motivating feature of combinatorial
auctions is the ability to capture complementarities in the buyers’ preferences (i.e.,
super-additive valuation functions), this restriction limits the applicability of WE in
many algorithmic mechanism design settings.

Circumventing the existence problem requires relaxing the WE notion, and several
approaches can be taken with respect to this relaxation. One approach is to allow
the seller to set arbitrary bundle prices instead of item prices; i.e., set a price pS for
every bundle S (see, e.g., [8,10,42]). This approach does lead to strong existence and
efficiency results, but loses much of the simplicity and transparency that is offered by
item pricing.

Another approach is to relax the requirement for market clearance (while still
insisting that every buyer maximizes his utility). This approach is natural in settings
where the seller wishes to maximize some well-defined objective function, such as
social welfare or revenue, and might be able to credibly leave some unsold items in the
market. This relaxation completely solves the existence problem; indeed, an outcome
in which all items are priced prohibitively high would trivially adhere to the proposed
equilibrium notion. It might, however, come at a huge social expense. This begs the
question: can a good social welfare be supported in a pricing equilibrium that relaxes
the market clearance condition? As we show in Section 2.2, the answer is surprisingly
discouraging. In particular, even for the class of fractionally subadditive valuations [22]
— a strict subset of subadditive functions that exhibits strong substitutability among
items — the loss in social welfare can be linear in the number of items. Relaxing
market clearance, therefore, is not sufficient, and a new approach is needed. In what
follows we introduce a new equilibrium concept that captures a novel approach to the
problem.

A New Concept: Combinatorial Walrasian Equilibrium (CWE). We propose to
pair the notion of Walrasian equilibrium with a simple combinatorial operation, as
follows. The seller first partitions the items for sale into indivisible bundles. This
partition induces a reduced market, where individual items are no longer available,
rather only the specified bundles. This operation can be perceived as redefining the
items. Each individual bundle — now an indivisible item — is then assigned a price,
overall pricing over the reduced market is linear, i.e., the price of a set of bundles

1We note that the seller could be either a government agency wishing to maximize market
efficiency, or a monopolist wishing to maximize revenue.
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equals the sum of the bundles’ prices2. An allocation in the reduced market is then
an assignment of bundles to bidders.

The outcome of such a process is a CWE if every bidder obtains a utility-
maximizing set of bundles in the reduced market, and no conflict arises. Thus, the
essential feature of a CWE is the ability of the seller to redefine his items by pre-
bundling them prior to sale. This is an innocuous and natural power to afford the
seller; after all, as the owner of the objects to be sold, it seems reasonable that he
may choose to repackage them as he sees fit.

Clearly, a CWE is guaranteed to exist for every valuation profile, even without
relaxing market clearance. Indeed, the seller could simply collect all objects together
into a single grand bundle, and then sell that one bundle to the bidder who values it
most. However, this may be a very inefficient outcome for the market. The natural
combinatorial question, then, is whether there exists a partition of the objects (and
associated prices) so that a CWE exists and has high social welfare. An additional
question is how best to partition the objects and set prices in order to maximize the
seller’s revenue. We are interested in both the existential and computational aspects
of these problems.

Our Results. We begin by providing characterization of the set of CWE alloca-
tions (i.e., allocations that admit supporting CWE prices). Specifically, an allocation
can be implemented at CWE if and only if that outcome is an optimal solution to a
certain linear program: the configuration LP for the assignment problem, restricted
to the bundles in the outcome allocation. This implies that every CWE generates
an efficient allocation of the bundles that are sold, though we note that this neces-
sary condition is not always sufficient. In particular, the optimal allocation cannot
necessarily be implemented at CWE; in Section 2.3 we exhibit an example where the
welfare-optimal CWE attains only 2/3 of the unconstrained optimal social welfare.

We next study the problem of finding CWE outcomes that maximize social welfare
or revenue in general market settings. Recall that an allocation refers to an assignment
of items to bidders. Our main result is the following:
Result 1 (2-approximation for social welfare): Given an allocation Y, we pro-
vide an algorithm that computes a CWE X that guarantees a social welfare of at
least 1

2SW(Y), and runs in polynomial time, given an access to each bidder’s demand
oracle.

A direct corollary of the above result is that every instance admits a CWE that
obtains at least half of the optimal (unconstrained) social welfare. Note that our
result does not restrict the preferences of the bidders; it holds for arbitrary valuation
functions, including those with complements. Moreover, since the result holds for ar-
bitrary Y, every social-welfare approximation can be converted into a CWE allocation
that achieves the same approximation (up to factor 2). In other words, our algorithm
can be interpreted as a black-box reduction that reduces the economic problem of
finding a CWE with good social welfare to the algorithmic problem of social-welfare
approximation for a given class of valuation functions. The fact that our method pro-
ceeds in a black-box manner is significant, as it allows a separation of the algorithmic
and economic aspects of our pricing problem. Such reductions have been developed
only rarely, such as for Bayesian incentive compatible mechanisms [6, 12,32,33].

The presentation of our algorithm is given in two stages. We first describe an
algorithm that provides the desired approximation result, albeit it (a) might run

2This essential feature — linearity of prices in the reduced market — distinguishes the proposed
solution concept from previous notions in the spirit of bundle pricing [8].
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in exponential time, and (b) generates only an “approximate CWE” (in a sense we
make explicit in Section 3). The advantage of this algorithm is its simplicity and
its natural interpretation as an ascending price auction (see Section 3). A more
challenging task is to modify the proposed algorithm into a polynomial time algorithm
that preserves the same approximation ratio and generates an exact CWE. This is
the content of Section 4. The algorithm is polynomial, given an access to a demand
oracle of each agent (in the reduced market) — where agents get a set of item prices
and respond with their most desired bundle given these prices. We note that in our
context demand queries are unavoidable, since agents must be able to determine their
demand sets. Additionally, since we consider reduced markets defined by the seller’s
choice of partition, we will allow demand queries over any reduced market (not just
the original instance without bundles).

We also provide a negative result illustrating the need for bundles:

Result 2 (linear lower bound on approximation factor, under item pric-
ing and XOS valuations): There exists an instance in which no equilibrium with
item prices gives a sublinear approximation to social welfare, even if valuations are
fractionally subadditive.

We next consider the problem of revenue maximization and provide the following
results.

Result 3 (O(log n)-approximation for revenue): Given an allocation Y to n
buyers, we provide an algorithm that computes a CWE X that extracts revenue of
O(log n) fraction of SW(Y), and runs in polynomial time, given an access to agents’
demand oracles.

Moreover, this result is tight in terms of the trade-off between social welfare
and revenue objectives for the outcomes that might be supported at CWE: there are
instances in which no CWE extracts revenue more than a logarithmic fraction of the
social welfare. A corollary of our result is that, for any class of valuations functions
that admits a polytime constant approximation to social welfare, one can find (in
polytime) a CWE that obtains an O(log n) approximation to the revenue-optimal
CWE. Furthermore, a computational hardness result due to Briest [11] shows that
one cannot hope for better than a polylogarithmic approximation: even in the special
case of unit-demand bidders, where CWE reduces to envy-free pricing, there is a lower
bound of Ω(logε(n)) for the problem of approximating optimal revenue (subject to
natural hardness assumptions).

Our techniques. The main combinatorial tool employed in the design and analysis
of our algorithms resembles techniques taken from the theory of stable matching.
In particular, our scheme proceeds in a fashion that is similar to the Gale-Shapley
algorithm [29], with bidders and items residing in the two sides of the market, and
bidders “making proposals” to the items. During the procedure, the price of each item
reflects the item’s preferences over the bidders and it keeps growing monotonically.
Meanwhile, the choices available to each bidder become scarcer and more expensive.
Finally, the resulting allocation of buyers to bundles may be viewed as a matching,
since every allocated set of items and/or bundles may be further treated as a single
big bundle.

Despite the similarities to the Gale-Shapley algorithm, there are several important
aspects that distinguishes our setup from the standard setting of stable matching.
Firstly, our combinatorial auction model allows for bidders to demand sets of items.
As a result, bundles demanded by the bidders may overlap in a complex way, which
makes our task of resolving conflicts on the over-demanded items incomparably more
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difficult than for the unit demand valuations in any matching setup. Secondly, the
stable matching framework assumes no money in the market, while in our setting
prices play a crucial role to guarantee stability. Finally, our routine begins with an
initial allocation which is provided as part of the input and serves as a benchmark
against which to compare the obtained social welfare. The initial allocation is indeed
necessary if one is looking for an efficient implementation, due to the strong NP-
hardness results on social-welfare approximation in combinatorial auctions.

The ascending-price nature of our basic algorithm leads to a potentially expo-
nential runtime, as prices may climb slowly toward a stable profile. To address this
problem, we must aggressively raise prices to “interesting” breakpoints. We then an-
alyze the structure of the agents’ demands at these maximal price profiles, and find
that by resolving the demands of agents in a particular order we can ensure that
steady progress is made toward a final solution, leading to a polynomial runtime.

To construct a CWE with high revenue, a natural approach is to impose reserves:
lower bounds on bundle prices. However, manipulating prices in this way can affect
the structure of a final equilibrium in non-trivial ways, so that it is not clear that
revenue will ultimately increase. To circumvent this issue, we begin with a CWE
with high welfare, then modify prices by adding a constant amount to the price
of each bundle. This operation is conceptually similar to imposing a reserve, but
does not fundamentally change the structure of a stable allocation. Our approach to
maximizing revenue then reduces to tuning the extent of this flat price increase.

Related Work. The study of pricing equilibria in markets and related concepts
of outcome fairness have a rich history in theoretical economics, beginning with the
introduction of competitive equilibria by Walras [45]. Some of the earliest modern
work in the spirit of envy-free market outcomes is due to Foley [27] and Varian [44]. An
envy-free outcome is one where no agent wishes to exchange outcomes with another.
The line of work on market-clearing prices in our market assignment problem was
initiated by Shapley and Shubik [43]. Characterizations of existence of Walrasian
equilibria were studied in, for example, [2, 7, 30, 36, 38]. There is also a significant
line of work devoted to computation of Walrasian equilibrium and the analysis of
tâtonnement processes; see, for example, [14, 15,17].

An alternative line of work considers markets with non-linear bundle prices. Such
package auctions were formalized by Bikhchandani and Ostroy [8]. Applications to
combinatorial auctions include mechanisms due to Ausubel and Milgrom [3], Wurman
and Wellman [46], and Parkes and Ungar [42]. Our notion of CWE differs in that the
seller commits to a partition of the objects, then sets linear prices over those bundles.

The problem of computing revenue-optimal envy-free prices has received recent
attention in the computer science literature. Guruswami et al. [31] provide approx-
imation algorithms for envy-free pricing in certain special cases, leading to a line of
work improving on the attainable approximation factors [5, 13, 34] and a polyloga-
rithmic lower bound [11]. Mu’alem [40] studies the revenue maximization question
for agents with general types. The notion of envy-freeness has also been applied to
problems in machine scheduling [16].

Fiat et al. [26] considered an extension of envy-freeness in which no agent envies
any subset of other agents. This concept is related to our notion of CWE. How-
ever, crucially, they restrict their definition to agents with single-minded types, which
dampens the distinction between multi-envy freeness and envy-freeness.

A significant line of work in the algorithmic mechanism design literature is con-
cerned with the development of truthful mechanisms for combinatorial markets. See,
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for example, [1,18,21,24,35,37,41] and references therein. The goal in this work is to
develop algorithms that elicit truthful value revelation from the bidders. In contrast,
we assume a full-information model and our goal is to develop an algorithmic pricing
structure that satisfies certain transparency and fairness conditions.

Some of our algorithms make use of demand queries, a manner of eliciting prefer-
ence information from bidders with complex valuations. For representative works on
the power of demand queries, see [4, 9, 19,39].

Fu, Kleinberg and Lavi [28] introduced the notion of conditional equilibrium as a
WE relaxation, where no buyer wishes to add additional items to his allocation under
the given prices, but may wish to drop ones. They show that, when buyers have
submodular valuations, a conditional equilibrium always exists and every conditional
equilibrium achieves at least half of the optimal social welfare. While their work is
similar in spirit to the results herein, our equilibrium concept differs fundamentally
in that it does not relax the requirement that every agent receives a bundle in his
demand set. In particular, the conditional equilibrium notion violates basic envy-
freeness conditions, in the sense that one bidder might prefer another agent’s items,
at their current prices, to his own allocation.

2. Model and preliminaries. We consider an auction framework with a set
M of m indivisible objects and a set of n agents. Each agent has a valuation function
vi(·) : 2M → R≥0 that indicates his value for every set of objects, is non-decreasing
(i.e., vi(S) ≤ vi(T ) for every S ⊆ T ⊆ M) and is normalized so that vi(∅) = 0. The
profile of agent valuations is denoted by v = (v1, . . . , vn), and an auction setting is
denoted by a tuple A = (M,v).

A price vector p = (p1, . . . , pm) consists of a price pj for each object j ∈ M . An
allocation is a vector of sets X = (X0, X1, . . . , Xn), where Xi∩Xk = ∅ for every i 6= k,
and

⋃n
i=0Xi = M . In the allocation X, for every i ∈ N , Xi is the bundle assigned to

agent i, and X0 is the set of unallocated objects; i.e., X0 = M \
⋃n
i=1Xi.

As is standard, we assume that each agent has a quasi-linear utility function; i.e.,
the utility of agent i being allocated bundle Xi under prices p is ui(Xi,p) = vi(Xi)−∑
j∈Xi

pj . Given prices p, the demand correspondence Di(p) of agent i contains the
sets of objects that maximize agent i’s utility:

Di(p) =

{
S∗ : S∗ ∈ argmax

S⊆M
{ui(S,p)}

}
.

A tuple (X,p) is said to be stable for auction A = (M,v) if Xi ∈ Di(p) for every
i ∈ N . A price vector p is stable if there exists an allocation X such that (X,p) is
stable. An allocation X is stable if there exists a pricing p such that (X,p) is stable.

For a partition Γ = (Γ1, . . . ,Γk) of the item set M we slightly abuse notation
and denote by Γ = {Γ1, . . . ,Γk} the reduced set of items, where the valuation of each
agent i of a subset S ⊆ Γ is vi(

⋃
j:Γj∈S Γj). That is, vi can be naturally interpreted as

a valuation over the set of bundles in Γ. Throughout the paper we will typically use
j to index over partition elements. We denote by AΓ an auction over the reduced set
of items Γ with the induced valuation profile. We note that k could be either smaller
or larger than n (e.g., by setting some elements of the partition to ∅).

Every allocation X induces a partition Γ(X) = (X0, . . . , Xn). A tuple (X,p),
where X = (X0, . . . , Xn), and pi is the price of Xi for every Xi 6= ∅, is a Combinatorial
Walrasian Equilibrium (CWE) if (X,p) is stable in the auction AΓ(X). Clearly, X0

may be an empty set, in which case no item remains unallocated (i.e., the market
clears). Allowing for X0 to be non-empty is essentially the relaxation of the market
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clearance condition. An allocation X is said to be CWE if it admits a price vector
p ∈ Rn+1

≥0 such that (X,p) is CWE. A mechanism is said to be CWE if it maps every
valuation profile v to an outcome (X,p) that is CWE.

Relation to WE. A tuple (X,p), where X = (X0, X1, . . . , Xn) and p = (p1, . . . , pm),
forms a Walrasian equilibrium (WE) if (X,p) is stable in A and pj = 0 for every item
j ∈ X0. When the latter condition is satisfied, we also say that (X,p) clears the mar-
ket. A CWE is weaker than a WE in two ways: first, it allows for market reduction
by means of bundling; second, it does not require market clearance.

2.1. Characterization. The characterization of a CWE allocation is closely
related to the characterization of an allocation that can be supported in a WE [7].
For a given partition Γ = {Γ1, . . . ,Γk} of the objects, the allocation of Γ to N can be
specified by a set of integral variables y

i,S
∈ {0, 1}, where y

i,S
= 1 if the set S ⊆ Γ of

partition elements is allocated to agent i ∈ N and y
i,S

= 0 otherwise. These variables
should satisfy the following conditions:

∑
S yi,S

≤ 1 for every i ∈ N (each agent is
allocated at most one bundle) and

∑
i,S⊇Γj

y
i,S
≤ 1 for every Γj ∈ Γ (each element of

the partition is allocated to at most one agent), where we are using j to index over the
elements of partition Γ. A fractional allocation of Γ is given by variables y

i,S
∈ [0, 1]

that satisfy the same conditions and intuitively might be viewed as an allocation of
divisible items. The configuration LP for AΓ is given by the following linear program,
which computes the fractional allocation that maximizes social welfare.

max
∑
i,S

vi(S) · y
i,S

s.t.
∑
S

y
i,S
≤ 1 for every i ∈ N∑

i,S⊇Γj

y
i,S
≤ 1 for every Γj ∈ Γ

y
i,S
∈ [0, 1] for every i ∈ N,S ⊆ Γ

The characterization given in [7] states that a WE exists if and only if the optimal
fractional solution to the allocation LP occurs at an integral solution. This char-
acterization of a WE allocation can be used to derive a characterization of a CWE
allocation. Recall that every allocation X induces a partition Γ(X) = (X0, . . . , Xn).
Let Γ(Ẋ) = (X1, . . . , Xn); i.e., Γ(Ẋ) denotes the reduced set of items Γ(X) excluding
element X0. The WE characterization now implies the following CWE characteriza-
tion.

Claim 1. An allocation X = (X0, X1, . . . , Xn) is a CWE for A iff the con-
figuration LP for AΓ(Ẋ) has an integral optimal solution that sets y

i,Xi
= 1 for all

i ∈ N .
Therefore, the problem of finding a CWE allocation is equivalent to the problem

of finding a subset of the items and a bundling over this subset, such that the optimal
fractional allocation over these bundles occurs at an integral allocation.

2.2. Stable item pricing. The proposed concept of CWE is weaker than the
concept of WE both in that it allows to restrict the item set by bundling and in that
it does not require market clearance. Clearly, relaxing any one of these conditions is
sufficient to guarantee existence of a stable allocation. This begs the question whether
it is possible to achieve good guarantees on the market efficiency (social welfare) by
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relaxing only one of these conditions. The relaxation that allows bundling, but still
requires market clearance, is studied in follow-up work [20, 25]; in particular, a lower
bound of Ω(logm) has been established for subadditive buyers [20]. In this section, we
show that relaxing the market clearance condition alone is not sufficient, in general.
In particular, for several families of valuation functions, we establish strong lower
bounds on the social-welfare approximation that can be achieved in a stable item-
priced allocation. These results reinforce the need for bundling, as captured by the
CWE notion.

Unit-demand & single-minded valuations. Consider the following auction:
bidder 1 is a unit-demand agent, who values any non-empty subset of the items at
1 + ε; bidder 2 is a single-minded agent, who desires the set of all items for a value
of m. In the optimal allocation all m items must go to agent 2 resulting in a social
welfare (SW) of m. However, in every stable pricing p that supports this allocation,
there exists an item j ∈ [m] such that pj ≤ 1 (otherwise the set [m] cannot be a
demand set of agent 2). But this in turn implies that j is demanded by agent 1.
Therefore, every stable allocation assigns a single item to agent 1 for a SW of 1 + ε,
compared to the optimal SW of m, and the multiplicative linear gap of Ω(m) follows.

It might not come as a surprise that item prices are not sufficient to obtain high
welfare if valuations are super-additive. After all, if items are complementary to each
other, then bundling is an intuitive operation. Surprisingly, the next example shows
that a linear gap may exist even if all valuations are sub-additive.

XOS (fractionally-subadditive) valuations. Consider an auction with m
items and two agents with the following symmetric XOS valuations. Agent 1 is unit-
demand and values every subset at 1/2 − δ, for a sufficiently small δ (that will be
determined soon). Agent 2 values any subset of size k at max(1, k/2); it is easy
to verify that this is an XOS valuation. The socially optimal outcome allocates all
objects to the second agent for a total value of m/2. We claim that there is no stable
pricing that sells more than two items. For every m ≥ 3, an optimal integral solution
obtains a value of m/2 (by giving all the items to agent 2). By the characterization
given in [7] (see also Section 2), this allocation admits a stable pricing if and only
if m/2 is the optimal fractional solution of the corresponding configuration LP. We
will now show a fractional solution that obtains value greater than m/2 for every
δ < 1

2(m−1) . Consider the fractional solution in which the allocation of the first (unit

demand) agent is given by y1,{j} = 1/m for every j ∈ [m], and the allocation of the

second (XOS) agent is given by y2,{j} = 1
m(m−1) for every j ∈ [m], and y2,[m] = m−2

m−1 .

One can easily verify that this is a feasible solution, and the welfare obtained by {yi,S}
is given by SW (y) = m

2 + 1
2(m−1) − δ, which is greater than m

2 for every δ < 1
2(m−1) ,

as required. We conclude that a stable outcome can allocate at most two objects,
and thus the highest welfare that can be obtained in a stable allocation is 3/2 − δ,
resulting in a multiplicative gap of m/3.

2.3. Efficiency loss due to CWE: A lower bound. In this section we prove a
lower bound on the efficiency loss of combinatorial Walrasian equilibria. In particular,
we show that there are instances in which no CWE obtains more than a (2/3 + ε)
fraction of the optimal social welfare, for every ε > 0. Consider an auction with 3 items
and 3 bidders. Each agent i has valuation vi such that vi({1, 2, 3}) = vi({1, 2, 3} \
{i}) = 2 + ε, and for any other set S we have vi(S) = 1 if i ∈ S and vi(S) = 0
otherwise. The optimal integral allocation has a social welfare of 3 with each object
i ∈ {1, 2, 3} being allocated to agent i. On the other hand, the fractional solution
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y1,{2,3} = y2,{1,3} = y3,{1,2} = 1/2 to the configuration LP obtains a total value of
3 + 3ε/2 that exceeds the value of optimal integral solution. Therefore, in any CWE
either one item is unsold or at least two items are bundled together. In either case the
social welfare cannot exceed 2+ε. Thus, no CWE in this market can approximate the
optimal social welfare within a factor better than 2+ε

3 (for an arbitrary small ε > 0).

3. Social welfare approximation. In Section 2.3 we established a lower bound
of 1.5 on the social welfare approximation that can be achieved at a CWE. In this
section we show that there always exists a CWE that gives a 2-approximation to the
optimal social welfare for arbitrary valuations.

Moreover, we show existence by describing a natural ascending-price process that
converges to a CWE. This will be a natural extension of the classic Tâtonnement
process that finds a Walrasian equilibrium for (gross) substitutes valuations. In tradi-
tional Tâtonnement, prices are initially set to zero, agents iteratively respond to the
current prices with their demand, and prices of over-demanded items increase mono-
tonically. In our case, in addition to increasing prices of over-demanded items, the
market orchestrator will make use of an additional tool — merging bundles. These
operations will be monotone: prices increase monotonically, and bundles never break
apart.

We can describe this modified Tâtonnement process as an algorithm, listed as
Algorithm 1. Informally, the algorithm begins by bundling objects according to an
initial allocation (Y in the statement of Theorem 3.2) and setting properly-designed
initial prices (specifically, pricing every Yj at vj(Yj)/2). It maintains a pool of buyers
who are not allocated a demanded set (initially all buyers). The algorithm iteratively
chooses a buyer from the pool and asks for his most-demanded set. Whenever a buyer’s
demand set S is comprised of more than one item, the items in S are bundled together
(irrevocably), the bundle S is allocated to him, and any agents who were allocated
subsets of S are deallocated and placed back in the pool. It should be noted that with
our “aggressive” bundling, setting initial prices too low (as in standard tâtonnements)
can lead to a big welfare loss. Therefore, the initial prices must be carefully chosen. If
the demanded set is a singleton that is already allocated to another agent, the conflict
is resolved (in subprocedure ResolveConflict) by gradually increasing the price of
the item (in discrete jumps of some ε > 0), until it is not demanded by one of these
agents. The algorithm terminates when all agents’ demands are satisfied.

We note that the direct implementation of the ascending-price auction described
in Algorithm 1 is simple and intuitive, but has the disadvantage that it increments
prices slowly in small, discrete jumps. As a result, the algorithm runs in pseudo-
polynomial time, and it finds only an ε-CWE (in a sense we make explicit in Definition
3.1 below). In Section 4 we will present a modified algorithm that increments prices
differently and thereby finds an exact CWE in polynomial time.

Definition 3.1. A tuple (X,p) is ε-stable for a given auction if ui(Xi,p) ≥
ui(Xi

′,p)− ε for every i and every set Xi
′ of items in the auction. A tuple (X,p) is

an ε-approximate Combinatorial Walrasian Equilibrium (ε-CWE) if (X,p) is ε-stable
in the auction AΓ(X). That is, each agent can gain at most ε utility by switching to a
different set of bundles at the given prices.

We will show that Algorithm 1 finds an ε-CWE while degrading the social welfare
of an initial allocation by at most half, plus an additive error term that arises from
the discretization of prices.

Theorem 3.2. Given an initial allocation Y, Algorithm 1 computes an ε-CWE
(X,p) such that SW(X) ≥ 1

2SW(Y)− nε.
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Algorithm 1 Simple CWE Algorithm

Input: Valuations v; initial allocation Y = (Y1, . . . , Yn); discretization parameter ε
Output: A CWE (X,p)

1: Initialize: Γ = {Yi : Yi 6= ∅}; p(Yi) = 1
2vi(Yi) for all i; Xi = ∅ for all i; Pool = N

2: while Pool 6= ∅ do
3: Remove any element a from Pool
4: if Da(p,Γ) 6= ∅ then
5: Choose S ∈ Da(p,Γ)
6: Xa ← S
7: if |S| > 1 then
8: Set p(S) :=

∑
Γj∈S p(Γj)

9: for i such that Xi ∈ S do
10: Xi ← ∅
11: Pool← Pool ∪ {i}
12: Γ← Bundle(Γ, S) \ ∗ Γ := {Γj :Γj 6∈S} ∪ {S} ∗ \
13: else
14: if ∃b 6= a such that Xb = S then
15: ResolveConflict(S, a, b)

\∗ Note: If Da(p,Γ) = ∅ then a is not added back to Pool ∗\
16: Return (X,p)

ResolveConflict(S, a, b):

1: while S ∈ Da(p,Γ) ∩Db(p,Γ) do
2: p(S)← p(S) + ε
3: if S 6∈ Da(p,Γ) then Xa ← ∅; Pool← Pool ∪ {a}
4: else Xb ← ∅; Pool← Pool ∪ {b}

Proof. First, it is easy to see that the procedure must terminate. Indeed, bundles
monotonically merge and prices monotonically increase. Thus, assuming fixed price
increments of ε, the algorithm is guaranteed to terminate.

Second, we claim that upon termination, the obtained allocation and prices is an
ε-CWE. More specifically, we claim that after every iteration of the while loop on
line 2, any agent not in the pool is obtaining at most ε less than his optimal utility
under the current bundles and prices. Thus, when the pool becomes empty, every
agent receives an ε-approximate demand at the current prices, and the final allocation
and pricing is an ε-CWE. To see why the claim is true, note that when an agent a is
removed from the pool, he is allocated a most-demanded set S (line 6). Since prices
never decrease, this set S must remain a most-demanded set for agent a unless its
price increases, which occurs only in ResolveConflict. If ResolveConflict causes
an allocated set S to no longer be demanded, then the corresponding agent is returned
to the pool, with one exception: if the competing agents in ResolveConflict stop
demanding the set S simultaneously, only one of them is returned to the pool. In this
case, since the remaining agent demanded the set at the previous price increment, his
shortfall in utility can be at most one price increment, which is ε.

It remains to bound the welfare generated by the ε-CWE. Let U be the set of
agents that get non-empty allocations in X; i.e., U = {i : Xi 6= ∅}. Then, the social
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welfare is given by ∑
i∈U

vi(Xi) =
∑
i∈U

(vi(Xi)− p(Xi)) +
∑
i∈U

p(Xi)

=
∑
i∈U

ui(Xi) +
∑
i∈U

p(Xi)

≥
∑
i∈U

ui(Xi) +
∑
i∈U

∑
Yj⊂Xi

1

2
vj(Yj),(3.1)

where recall that Y = (Y1, . . . , Yn) is the given initial allocation. The last inequality
of (3.1) follows directly from the following facts: (i) every bundle Yj is originally
priced at 1

2vj(Yj), (ii) the price of a bundle that is created by a merge of two bundles
equals the sum of their prices, and (iii) a bundle’s price can only increase.

The second term in the RHS of (3.1) captures the welfare that comes from bundles
Yj that are being allocated in X. We next need to take care of the welfare that comes
from Yj ’s that are not being allocated in X. We first observe that every bundle that
is allocated in our procedure, keeps being allocated until termination. This is because
a bundle can be deallocated from one agent only if it is being allocated to another
agent. Therefore, every bundle Yj that is not allocated in X has never been allocated,
and therefore still has a price of 1

2vj(Yj) (as priced originally).
Given the last observation, we conclude that for every bundle Yj that is not

allocated in X, it must be that agent j is being allocated some other non-empty
bundle in X (i.e., j ∈ U). Indeed, if j 6∈ U , then agent j would gain a utility of
vj(Yj)− p(Yj) ≥ vj(Yj)− 1

2vj(Yj) ≥ 0 from the bundle Yj . This contradicts the fact
that ∅ ∈ Dj(p), unless vj(Yj) = 0.

However, the agent j ∈ U who has been allocated the bundle Yj in Y is allocated
in the CWE X another bundle which is preferred by him, up to an additive ε. This
means that agent j’s utility from Xj is at least 1

2vj(Yj)− ε.
Since all unallocated bundles Yj were either allocated in Y to agents i ∈ U , of

which there are at most n, or satisfy vj(Yj) = 0, summing over these bundles we get

(3.2)
∑
i∈U

ui(Xi) ≥
∑

Yj /∈
⋃

i∈U Xi

1

2
vj(Yj)− nε.

By plugging the last inequality in (3.1) we obtain∑
i∈U

vi(Xi) ≥
1

2

∑
Yj

vj(Yj)− nε =
1

2
SW(Y )− nε

and the assertion of the theorem follows.
Applying CWE algorithm to the optimal allocation Y and taking the limit as ε

tends to 0 we derive the following corollary.
Corollary 3.3. For every valuation profile v, there exists a CWE that obtains

at least half of the optimal social welfare.

4. Polynomial-time implementation. Here we discuss how one could imple-
ment the ascending-price procedure efficiently in a polynomial number of demand
queries to the agents. We note that in our context demand queries are indeed un-
avoidable, as agents must know their demand sets even to verify whether a given
outcome is stable. We also emphasize that our procedure takes as input an initial
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target allocation Y; the problem of finding an initial allocation Y is outside the scope
of our procedure. However, we can think of Y as being generated from some approx-
imation algorithm tailored to a particular class of valuations.

The polynomial-time algorithm is listed as Algorithm 2. Informally speaking,
Algorithm 2 makes two main changes to the more straightforward Algorithm 1. First,
rather than incrementing prices when necessary to resolve a conflict, the new algo-
rithm will attempt to maintain prices as high as possible, given the current allocation.
That is, prices are raised as much as possible3 without changing the demand corre-
spondence of any bidder that is not in the pool (i.e., any bidder currently holding a
demanded set). The advantage of this approach is that since these maximal prices
are easily computed from a given allocation, the algorithm can “skip” many rounds
of incremental price increases and simply jump to a maximal price vector. Moreover,
maintaining maximal prices has another advantage: when prices are maximal, each
agent must be indifferent between their current allocation and at least one other set
in their demand correspondence. This indifference simplifies the process of resolving
conflicts when serving an agent from the pool. This leads to the second change to
the algorithm, which is the way in which conflicts are resolved. For each buyer b with
an allocation Xb, the algorithm also maintains an “alternate” allocation Tb which is
also utility-maximizing. Whenever the demand set of an agent a from the pool is a
singleton currently allocated to another buyer b, we immediately award the allocation
to a and instead switch bidder b’s allocation to Tb. Any conflicts over Tb (i.e., because
it was previously allocated to some other bidder) are then resolved recursively.

A B CItems:

Players: 1 2 3

10
95

6 6

p=3 p=5p=3

(a)

A B C

1 2 3

p=4 p=5p=3

A B C

1 2 3

p=4 p=5p=3

serve 3 

A B C

1 2 3

p=5 p=5p=4

Raise
Prices

A B C

1 2 3

p=5 p=5p=4

serve 2 

(b)

Fig. 4.1. An example execution of Algorithm 2. (a) Agent valuations and initial prices. All
agents are unit demand. Bold lines denote the optimal allocation. (b) The execution of Algorithm
2, beginning after serving bidder 1 and applying RaisePrices. Solid lines indicate allocations Xi,
dotted lines indicate sets Ti.

We note that the alternative allocations Ta, together with the provisional allo-
cations Xa, can be interpreted as an augmenting path in the sense of matchings in
the market. We will illustrate the augmenting-path nature of the algorithm with an

3In fact, following the literature on Walrasian prices [36], the set of price vectors that support
a given allocation of non-pool buyers forms a lattice, since these are equilibrium prices in a reduced
market. Our procedure picks the maximal element in this lattice.
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example, depicted in Figure 4.1. In this example, there are three unit-demand agents
{1, 2, 3} and three items {A,B,C}. The valuations and initial prices are illustrated in
Figure 4.1(a). If agent 1 is removed from the pool first, then she is allocated her most-
demanded bundle {A}, and prices are raised so that she is indifferent between this and
her next most-demanded bundle {B}. We then have X1 = {A} and T1 = {B}, see
Figure 4.1(b). Likewise, when agent 3 is served next from the pool, she is allocated
item B. Prices on A and B are then raised until some agent becomes indifferent be-
tween their allocation and something outside {A,B}, which in this example is agent
3 and T3 = {C}. The result is an augmenting path: agent 1 is allocated {A} but is
indifferent between {A} and {B}; set {B} is allocated to agent 3, who is indifferent
between {B} and {C}. When agent 2 is removed from the pool and demands item
B, the allocation of agent 3 is immediately shifted to her alternative allocation {C},
yielding the final allocation.

We now turn to proving the correctness of Algorithm 2. We first note that, like
Algorithm 1, Algorithm 2 is monotone in the following sense:

(Monotonicity). Over the course of Algorithm 2, prices only increase and no bundle
is ever split. Moreover, once a bundle is allocated it never becomes unallocated.

Also, after an invocation of AllocateDemand completes, each bidder that is not
in Pool is allocated a demanded set. Note that each allocated set is truly utility-
maximizing, rather than only approximately utility-maximizing as in Algorithm 1.

Lemma 4.1. After a call to AllocateDemand terminates, each bidder i 6∈ Pool
is allocated a most demanded set.

Proof. If AllocateDemand is called with bidder a, then we have two cases. If the
demanded set for a is S with |S| > 1, then a is allocated S and other conflicting bidders
are added to Pool, so the result holds inductively. If |S| = 1, then a is allocated S,
so in particular a is allocated his most demanded set. The call to AllocateDemand
then terminates only if there is no conflicting bidder; in this case the result holds.
Note that we have not yet argued that AllocateDemand will, in fact, terminate.

We next show that RaisePrices increases the price vector to be maximal, within
the set of p such that Xi ∈ Di(p,Γ) for each bidder i with Xi 6= ∅.

Lemma 4.2 (Correctness of RaisePrices). After each call to RaisePrices(), for
each i with Xi 6= ∅, pi(Xi) is the maximal value such that Xi ∈ Di(p,Γ).

Proof. For a subset of players M and an allocation X, write ΓM for {Xj : j ∈M}
and Γ¬M for Γ\ΓM . We first show that RaisePrices is equivalent to a different
procedure which does not run in polynomial time. In this alternative procedure, the
set M is defined as before, and the prices of elements of ΓM are raised uniformly and
continuously until the threshold at which the demand set of some a ∈ M changes
(note that this must occur eventually; the new demanded set may be ∅). When this
occurs, a is removed from M , and the prices continue to increase for the elements
remaining in ΓM . This process continues until M is empty.

To see that this is equivalent to RaisePrices, consider some iteration of this
new process, say with initial price vector p and set M . Suppose the demand set of
some a ∈ M changes to S, and that the price vector at the point of the change is
p′. We claim that S ⊆ Γ¬M . The reason is that any S that includes elements of
ΓM has its price increase by at least as much as Xa, and hence a cannot prefer it
to Xa at prices p′. Thus when the demand set of a changes, it must be to some
S ∈ Da(p′,Γ¬M ) = Da(p,Γ¬M ). At the point at which the demand of a changes, it
must be that ua(Xa,p

′) = ua(S,p′) = ua(S,p). Thus the price increase between p
and p′ is precisely ua(Xa,p)−ua(S,p), and moreover player a is precisely the player
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Algorithm 2 Polytime CWE Algorithm

Input: Valuations v; target allocation Y = (Y1, . . . , Yn)
Output: A CWE (X,p)

1: Initialize: Γ = {Yi : Yi 6= ∅}; p(Yi) = 1
2vi(Yi) for all i; Xi = ∅ for all i; Pool = N ;

Reject = ∅; Ti = ∅ for all i
2: while Pool 6= ∅ do
3: Remove an arbitrary element a from Pool
4: if ua(S,p) ≤ 0 for each S ∈ Da(p,Γ) then
5: Reject← Reject ∪ {a}
6: else
7: Choose S ∈ Da(p,Γ)
8: AllocateDemand(a, S)
9: RaisePrices()

AllocateDemand(a, S):

1: if |S| > 1 then
2: for i such that Xi ∈ S do
3: Xi ← ∅
4: Pool← Pool ∪ {i}
5: p(S)←

∑
Γj∈S p(Γj)

6: Γ← Bundle(Γ, S) \ ∗ Γ := {Γj :Γj 6∈S} ∪ {S} ∗ \
7: Xa ← S
8: else
9: Xa ← S

10: if ∃b 6= a such that Xb = S then
11: Xb ← ∅
12: AllocateDemand(b, Tb) \∗ Change b’s allocation to Tb (set in

RaisePrices from the previous iteration of the algorithm). ∗\

RaisePrices():

1: Initialize: M ← {i : Xi 6= ∅}
2: while M 6= ∅ do
3: for i ∈M do
4: choose Si ∈ Di(p,Γ\{Xj : j ∈ M}) \∗ Demand, excluding allocations to

agents in M ∗\
5: di ← ui(Xi,p)− ui(Si,p) \∗ Note ui(Si,p) ≥ 0 ∗\
6: a← argmini∈M di
7: for i ∈M do
8: p(Xi)← p(Xi) + da
9: Ta ← Sa \∗ Ta is the set demanded by a, excluding allocations to agents

in M ∗\
10: M ←M − {a}

in M for which this quantity is minimal (since a was the first for whom the demanded
set changed). It is therefore equivalent to directly compute this quantity for each
player in M , choose the minimum, and raise the price of each object in ΓM by this
minimum amount. This is precisely what is done by RaisePrices, and hence the
procedures are equivalent as claimed.
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The lemma now follows easily from the definition of this equivalent process. For
each i with Xi 6= ∅, we have that at the point when i is removed from M , an increase
of p(Xi) would cause Xi 6∈ Di(p,Γ). Moreover, one element in Di(p,Γ) is contained
in Γ¬M , and the price of this element does not change between the point at which
i is removed from M and the conclusion of the process. Thus, when the process
concludes, it will still be that an increase of p(Xi) would cause Xi 6∈ Di(p,Γ). Thus
p(Xi) is maximal such that Xi ∈ Di(p,Γ), as required.

Note that RaisePrices defines an ordering over the players with Xi 6= ∅: the
order in which they are removed from M . Given an iteration of Algorithm 2, we
will write π for this permutation defined by the invocation of RaisePrices on the
previous iteration. That is, π(i) denotes the order in which player i was removed; for
notational convenience we will set π(i) = ∞ for all i with Xi = ∅. For instance, in
the example illustrated in Figure 4.1, after RaisePrices is called following the agent
3 being served, we have π(3) = 1 (since agent 3 is removed first, with T3 = {C}),
π(1) = 2, and π(2) = ∞. Note that on the first iteration of Algorithm 2 we have
π(i) =∞ for all i.

We now bound the number of iterations that can occur on a single invocation of
AllocateDemand.

Lemma 4.3. An invocation of AllocateDemand can recurse at most n times.
Proof. Note that AllocateDemand concludes with a potential tail recursion,

which can be thought of as an iteration of AllocateDemand with a different agent.
We must show that this tail recursion cannot occur more than n times in a single
invocation of AllocateDemand. To show this, we’ll show that if AllocateDemand
on input a results in a tail recursion with input b, then it must be that π(b) < π(a). In
particular, this means that no agent i can be passed as input to AllocateDemand
more than once in a recursive chain, and hence the number of recursive calls is at
most n.

To prove the claim, note that a recursive call occurs precisely when agent a
demands a single object from Γ, and this bundle is currently assigned to a bidder b.
In an initial (i.e. non-recursive) call to AllocateDemand we have π(a) = ∞ (since
a was drawn from Pool) and π(b) < ∞, so the result holds trivially. In a recursive
call we have π(a) <∞, and Xb ∈ Da(p,Γ). However, recalling our notation from the
proof of Lemma 4.2, we know that the demanded set Ta of a is contained entirely in
Γ¬M . Thus, since Ta = Xb, it must be that b 6∈ M when a is removed from M , and
hence π(b) < π(a).

Theorem 4.4. Algorithm 2 runs in polynomial time.
Proof. In each iteration of the main loop, either a set of objects is bundled or an

agent is added to the rejection set R. Each of these can happen at most m and n times,
respectively. Since each invocation of AllocateDemand also runs in polynomial time
by the above lemma, the result follows.

Theorem 4.5. Algorithm 2 returns a CWE with social welfare at least half of
the optimal allocation.

Proof. The fact that Algorithm 2 returns a CWE follows immediately from
Lemma 4.1. The argument for the approximation factor guarantee is the same as
for Algorithm 1, as this depends only on the starting condition (which is unchanged)
and the fact that no object becomes unallocated after it has been allocated.

5. Revenue approximation. In this section we consider the objective of the
seller’s revenue. Clearly, for any valuation profile, the seller’s revenue can never exceed
the social welfare of the optimal allocation. Therefore, given an allocation, its social
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welfare serves as a natural benchmark for the revenue objective. We prove that given
an allocation Y, the seller can compute in polynomial time a CWE that extracts
revenue of 1/O(logn) of the social welfare of Y.

We first prove a lower bound: there are instances in which no CWE extracts
revenue greater than 1/ln(n) times the optimal social welfare.

An example with a logarithmic separation between revenue and social
welfare. Consider a market that consists of n items and n unit-demand buyers,
where buyer i has value vi({j}) = 1/i for every item j. In any optimal allocation
every agent gets exactly one item, which results in a social welfare of

∑n
i=1

1/i ≈ lnn.
Any reduced set of items has the same structure of the agent’s valuations as before;
i.e. the reduced market contains m ≤ n items with n unit-demand buyers, where
buyer i has value vi({j}) = 1/i for every item j in the market. It is easy to verify
that due to the structure of valuations, in any CWE all allocated items must have
the same price. Suppose that k agents receive non-empty bundles; then one of these
agents has index i ≥ k. For this agent, vi(·) = 1/i ≤ 1/k. Therefore, the price on every
sold item is at most 1/k, which generates revenue of at most k · 1/k = 1.

We next show that given an allocation Y, one can compute a CWE that extracts
revenue within a factor 1/O(logn) of the social welfare of Y. As a corollary, there always
exists a CWE in which the revenue is at least a 1/O(logn) fraction of the optimal social
welfare, which is an upper bound on the optimal revenue.

To see how to construct a CWE with high revenue, consider beginning with a
CWE with high social welfare. A natural approach to increasing revenue is to impose
reserve prices: a lower bound on the price of each bundle. However, manipulating
prices in this way can affect demanded sets in non-trivial ways, and it is not clear
that the final outcome will actually generate more revenue (or even be stable at all).
Instead of imposing a reserve price, we will consider adding a constant amount to the
price of each bundle. This operation is conceptually similar to imposing a reserve,
but does not change the structure of a stable allocation (beyond compelling some
agents to leave empty-handed). We prove that there exists at least one choice for this
per-bundle price increase such that the corresponding revenue is least a logarithmic
fraction of the initial social welfare.

We note that our approach is not guaranteed to maintain the high social welfare
of the original CWE, and in fact seems likely to reduce welfare significantly when
the per-bundle surcharge is large. We leave open the problem of finding a CWE that
simultaneously achieves high welfare and revenue.

Theorem 5.1. Given an arbitrary allocation Y, one can find a CWE that extracts
revenue within factor 1/O(logn) of SW(Y) in a polynomial number of demand queries.

Proof. Given an allocation Y, we first run Algorithm 2 with Y as an input,
and obtain a CWE (X,p) such that SW(X) ≥ 1

2SW(Y). This step can be done
in a polynomial number of demand queries, as established in Section 4. Let X =
(X0, X1, . . . , Xk) and p = (p0, . . . , pk); that is, in the CWE (X,p), for every i =
1, . . . , k, agent i receives the bundle Xi at a price of pi. We next make the following
important observation.

Claim 2. Let (X,p) be a CWE, where X = (X0, . . . , Xk) and p = (p0, . . . , pk).
For any positive constant σ let pσ be the price vector (p0 + σ, . . . , pk + σ), and Xσ be
the allocation

∀i = 1, . . . , k Xi
σ =

{
Xi if vi(Xi) ≥ pσ

∅ otherwise.
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Then, (Xσ,pσ) is a CWE.

Proof. For any non-empty set S it holds that vi(S)−
∑
j∈S p

σ
j ≤ vi(S)−

∑
j∈S pj−

σ. On the other hand, vi(Xi)−pσi = vi(Xi)−pi−σ. Since (X,p) is a CWE, it follows
that vi(Xi)−pi ≥ vi(S)−

∑
j∈S pj for every S. Combining the above inequalities, we

get that ui(Xi, p
σ) ≥ ui(S, pσ). In addition, ui(Xi, p

σ) ≥ 0 if and only if vi(Xi) ≥ pσi .
The assertion follows.

Let SW0 =
∑k
i=1 vi(Xi) denote the social welfare of CWE (X,p). In addition,

let ` = dlog(2k)e, and for every integer t ∈ {1, . . . , ` + 1} define σ(t) = 2t−1 SW0

2k . Let

p(t) and X(t) be the vectors with Xσ(t)

i defined as in Claim 2

p(t) = (p0 + σ(t), . . . , pk + σ(t)), X(t) = (Xσ(t)

1 , . . . , Xσ(t)

k ),

Due to Claim 2, for every t ∈ {1, . . . , ` + 1}, (X(t),p(t)) is a CWE. For every CWE
(X(t),p(t)), we let SWt, REVt and Wt denote its social welfare, revenue, and the set of
indices of allocated bundles, respectively. Note that for every t, Wt+1 ⊆Wt. Finally,
let REV0 denote the revenue of CWE (X,p). The following is the key lemma in the
proof of the theorem.

Lemma 5.2. ∃ t ∈ {0, 1, . . . , `+ 1} s.t. REVt ≥ SW0

8` .

Proof. We first observe that

SW0 =

k∑
i=1

vi(Xi) =
∑
i∈W1

vi(Xi) +
∑
i/∈W1

vi(Xi)

≤
∑
i∈W1

vi(Xi) +
∑
i/∈W1

(pi +
SW0

2k
)

≤ SW1 + REV0 + k · SW0

2k

= SW1 + REV0 +
SW0

2
.

The first inequality follows from the fact that for every i /∈W1, vi(Xi) ≤ p(1)
i , and the

second inequality follows by substituting SW1 =
∑
i∈W1

vi(Xi) and
∑
i/∈W1

pi ≤ REV0.

Therefore, SW1 ≥ 1
2SW0 − REV0. One may assume that REV0 ≤ 1

4SW0, since
otherwise the assertion of the lemma follows directly. Thus, SW1 ≥ 1

4SW0.

We next show that SW`+1 = 0. For every i ∈ {1, . . . , k}, p(`+1)
i = pi + 2` SW0

2k ≥
pi + SW0 ≥ pi + vi(Xi) ≥ vi(Xi); thus W`+1 = ∅ and SW`+1 = 0.

Given that SW1 ≥ 1
4SW0 and SW`+1 = 0, there must exist some t ∈ {1, . . . , `}
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such that SWt − SWt+1 ≥ SW0

4` . We get:

SW0

4`
≤ SWt − SWt+1

=
∑

i∈Wt\Wt+1

vi(Xi)

≤
∑

i∈Wt\Wt+1

(
pi + 2t

SW0

2k

)

≤
∑
i∈Wt

(
pi + 2t

SW0

2k

)
≤ 2

∑
i∈Wt

(
pi + 2t−1 SW0

2k

)
= 2REVt,

where the second inequality follows from the fact that for every i ∈ Wt \ Wt+1,
vi(Xi) ≤ pi(t+1). We get that REVt ≥ SW0

8` , as required.
Recall that SW0 is within factor 1

2 of SW(Y). Combining this with the last lemma,
and noting that ` = dlog(2k)e, where k ≤ n implies that REVt is within factor 1

O(logn)

of SW(Y). To conclude the proof we observe that after the execution of Algorithm 2
all the quantities vi(Xi), SWt, REVt can be easily computed in polynomial time.

By applying theorem 5.1 with the initial allocation Y being the optimal alloca-
tion, the following corollary follows.

Corollary 5.3. For every valuation profile v, there exists a CWE that extracts
revenue within a factor 1/O(logn) of the optimal social welfare.

6. Open Problems. Our results leave many open questions and avenues for
future research. First, our results leave a gap between the 2-approximation result
for social welfare of a CWE and the lower bound of 3/2. We conjecture that 3/2
is the true bound, but closing this gap seems a challenging task. In particular, the
integrality gap for the configuration LP approaches 2 when the integral solution is a
matching, so this technique cannot be used to improve the gap.

Second, the equilibrium notion studied in this paper does not require market
clearance. To what extent do our results extend to the stronger equilibrium notion
of CWE with market clearance? Some progress has been made on this question since
the conference version of this paper first appeared: market-clearing CWE can yield
constant-factor approximations for certain valuation classes, including single-minded
valuations [25], but a lower bound of Ω(logm) has been established for subadditive
buyers [20].

It would also be interesting to study how well item-pricing equilibria, without
market clearance, can approximate social welfare. In this paper we established a lower
bound of Ω(m) when valuations are fractionally subadditive. For the more restricted
class of gross-substitutes valuations, a WE always exists, and thus optimal welfare can
be achieved in equilibrium. Identifying more general families of valuations for which a
constant fraction of the optimal SW can be achieved would be an interesting research
direction. Again, some partial progress has been made: since the conference version
of this paper first appeared, a lower bound of Ω(

√
m) was established for submodular

valuations [24].
Our algorithm receives an initial allocation as input and returns a CWE allocation

that performs well with respect to the given allocation. Is there a natural process
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that arrives at a good approximation, without receiving an initial allocation? The
severe NP-hardness results for various valuation families preclude the possibility of a
polynomial time process that would work for arbitrary inputs, but some families of
valuations (e.g., submodular) seem particularly appealing in this context.

Our algorithms make use of demand queries, but of a special form: we allow
the seller to define a partition of the objects into bundles, and can then ask demand
queries with respect to the reduced market in which these bundles are the objects for
sale. This interpretation of demand queries seems natural, since the assumption that
agents can determine their demands is not tied to the particular items for sale. What
is the additional computational power afforded by this (seemingly stronger) definition
of demand queries?

We have shown two separate results: the existence of a CWE that obtains a
good approximation to the optimal social welfare, as well as a CWE that obtains
a logarithmic fraction of the optimal revenue. Is there a CWE that simultaneously
obtains a good approximation to both social welfare and revenue?

Finally, this paper operates in the full information regime, where incentive com-
patibility is not a concern. An interesting question is to what extent our results can
be extended to private-information settings. Since the appearance of the conference
version of this paper, some progress has been made on item pricing mechanisms in the
Bayesian setting, where valuations are private but drawn from known distributions.
For this setting, there is a polynomial time, dominant-strategy incentive compatible
mechanism that obtains a constant fraction of the optimal social welfare for submodu-
lar (in fact, fractionally subadditive) valuations [23]. However, despite the connection
to item pricing, this mechanism does not necessarily generate stable outcomes. One
could additionally ask: what is the best social welfare that can be obtained by an
incentive-compatible CWE mechanism, whether in polynomial time or not?
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