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Abstract

In this letter, we discuss correlation-robust framework proposed by Carroll [Econometrica 2017]
and our new development [SODA 2018]. Consider a monopolist seller that has n heterogeneous
items to sell to a single buyer with the objective of maximizing seller’s revenue. In the correlation-
robust framework, the seller only knows marginal distribution of each separate item but has no
information about correlation across different items in the joint distribution. Any mechanism is
then evaluated according to its expected profit in the worst-case over all possible joint distributions
with given marginal distributions. Carroll’s main result states that in multi-item monopoly problem
with additive buyer, i.e., buyer’s value for any set of items is the sum of values of individual item
in the set, the optimal correlation-robust mechanism should sell items separately. We extend the
separation result to the case where buyer has a budget constraint on her total payment. Namely,
we show that the optimal robust mechanism splits the total budget in a fixed way across different
items independent of the bids, and then sells each item separately with a respective per item budget
constraint.

We highlight an alternative approach via dual Linear Programming formulation for the optimal
correlation-robust mechanism design problem. This LP can be used to compute optimal mechanisms
in general (other than additive) settings. It also yields an alternative proof for the additive monopoly
problem without constructing worst-case distribution and allowed us to extend the proof to the budget
setting.

1 Introduction

In the monopolist setting the seller has n heterogeneous items to sell to a single buyer. The monopolist
has a prior belief about the distribution of buyer’s values and wants to sell the goods so as to maximize
her expected revenue. In case of a single item (n = 1) with value drawn from a distribution F the
optimal solution [28] is straightforward: the seller offers a fixed take-it-or-leave-it price p chosen to
maximize expected payment p · (1 − F (p)). As an example of the multidimensional problem let us
consider the most basic and widely studied version, where buyer’s value for a set of items is additive.
This easy-to-state problem despite the simplicity of the single-item case often leads to a very complex
and unwieldy solutions.

The problem of finding the right auction format and proving its optimality is quite difficult even in
the case of two items (n = 2). The monopolist may use quite a few selling strategies: she may sell items
independently by posting a separate price for each of the two items; or offer a bundle of both goods, at
yet another price. In general, the seller can offer a menu with many options that may involve lotteries
with probabilistic outcomes, e.g., a 0.6 chance of getting first item and 0.4 chance of getting second item,
for some price. In some special cases the optimal mechanism is relatively simple, e.g., in a natural case
of values for different goods being independent and uniform [0, 1], the optimal mechanism offers a menu
with separate prices for each of the items and a price for the bundle (despite a simple answer the proof
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of this fact is quite nontrivial [27].) For general distributions it has been shown that randomization
might be necessary and even that the seller might have to offer an infinite menu of lotteries [22, 18]. On
the other note, the revenue of the optimal auction may be non-monotone [23] when the buyer’s values
in the prior distribution are moved upwards (in the stochastic dominance sense). These issues not only
appear when values for two or more items are correlated, but also when values for the two items are
independently distributed.

To avoid the aforementioned complications Carroll [10] has recently proposed a new framework for
multidimensional monopolist problem1 for additive buyer. In this framework the seller knows prior
distribution of types vi ∼ Fi for each individual item i ∈ [n]. However, unlike the traditional approach,
in which the seller maximizes expected payment with respect to a given prior distribution D over the
complete type profiles v = (v1, · · · , vn), in the new framework the seller does not know anything about
correlation of types across different items. Any mechanism then is evaluated according to its expected
profit in the worst-case, over all possible joint distributions with given marginal distributions {Fi}ni=1 of
each separate item i ∈ [n]. In other words, the seller wants to get a guarantee on the expected profit of
a mechanism which is robust to any correlation across different type v components. Although, Carroll’s
model is formulated for a buyer with additively separable valuation, the framework easily extends to
other more general mechanism design settings, where the buyer does not need to be additive and may
potentially have any valuation function for different allocations x of items, e.g., the buyer might be
unit-demand (i.e., he does not want more than one item), or have budget constraint.

It is quite remarkable that traditional for computer science worst-case approach was proposed by an
economist in an economics journal. There are standard pros and cons of the worst-case versus average-
case analysis frameworks in computer science, which also apply to the monopolist setting. However,
there are some specific points that we shall discuss below.

1. The underlying assumption of the Bayesian analysis framework is that joint prior distribution is
already known to the seller. There is a serious practical concern regarding learning correlated
multidimensional distribution: the computational and sampling complexity of this problem is
exponential in the dimension (i.e., number of items). Another challenge in learning the prior
distribution arises as a result of strategic behavior of the buyer, who does not usually report his
type but responds to the seller’s offer in each single interaction and might want to conceal data in
order to improve his interaction with the seller in the future. In this respect, learning information
about separate marginals is much simpler econometrics task that does not suffer from the curse
of dimensionality.

2. It is standard in the literature to assume that the prior distribution is independent across items.
In this case it is expected that one can get better revenue guarantees than in the worst-case
framework. However, in practice, the independence assumption does not always hold and even
verifying it (in the property testing sense) is quite non trivial statistical task. The studies of
correlated priors are scarce but not uncommon in the literature, both for the cases of positively
or negatively correlated distributions, see e.g. [25, 29, 2]. The case of correlated distribution is
significantly more challenging than the case of independent priors. In this respect, correlation-
robust framework offers an alternative tractable model to study the unwieldy case of possibly
correlated prior distributions.

3. Even with independent prior distribution the optimal mechanism can be very complex and as
such is not employed in practice. A recent line of work studies the monopolist problem in the
simple versus optimal framework [24] and obtained a few interesting approximation guarantees.

1Carroll considered a more general setting of multidimensional screening with additively separable payoff structure.
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In the case of additive buyer, Babaioff et. al. [1] showed that a simple mechanism, of selling items
either separately, or together in one grand bundle gives a constant-factor approximation to the
optimal revenue. In the worst-case framework, Carroll has shown that the optimal correlation-
robust mechanism is to sell items separately, without any bundling. His result compliments the
result of [1] by adding a valuable counterpoint to the algorithmic mechanism design literature as
Carroll puts it “If you don’t know enough to see how to bundle, then don’t.”

4. The prior distribution usually represents a belief of the seller about buyer’s types, but not the
exact distribution. As such the prior might not accurately capture the actual distribution and thus
some robustness guarantees and insensitivity to the precise data can be useful. The new framework
addresses the issue of possible correlation between different type components. Furthermore, it
seems to offer more tractable way to analyze other robustness issues, such as mistakes in the
beliefs about marginal distributions.

To conclude, the new framework complements and adds a few valuable points to mechanism design
literature on the monopolist problem and as such deserves more attention from the computer science
community. Specifically, it seems quite natural to examine this framework from a computational
perspective. A general monopolist problem in the correlation-robust framework can be described with
n distributions {Fi}ni=1 for each separate item. The goal is to find a truthful mechanism with the best
revenue guarantee over all possible joint distributions D with specified marginals {Fi}ni=1. We know from
Carroll’s work what the optimal solution is for the case of additive buyer. However, for other versions
of the problem (e.g., for unit-demand ) the structure of the optimal mechanism is unclear and it is
natural to ask a question of computing the optimal mechanism for any given set of marginals {Fi}ni=1.
We note that this problem has quite a succinct description. Indeed, the input to this problem can be
specified with n one-dimensional distributions {Fi}ni=1, each described with |Vi| parameters, where Vi
is a support of Fi. This is in contrast with the traditional computational Bayesian framework [6, 5, 7],
where the input to a single-buyer monopoly problem (distribution D of types v = (v1, . . . , vn)) might
have exponential in the number of items size of

∏n
i=1 |Vi| and thus some assumptions about polynomial

number of types in the support of D are necessary.

2 The Model

We consider a canonical multidimensional auction environment where one agent is selling n hetero-
geneous items to a single buyer. This environment can be specified by an allocation space X, which
is assumed to be a convex set in [0, 1]n (we assume that agent is risk-neutral and his value extends
to any convex combination of feasible allocations x ∈ X); type space V =

∏n
i=1 Vi, Vi ⊆ R≥0 and a

value function val : X × V → R≥0. We use v = (v1, v2, · · · , vn) ∈ V to denote a multidimensional
type of the agent. When buyer has additive valuation, we have val(v, x) = 〈v, x〉 =

∑n
i=1 vi · xi. We

employ standard formulation of incentive compatible (a.k.a. truthful) mechanism as a pair of allocation
x : V → X and payment p : V → R≥0 functions satisfying incentive compatibility (IC) and individual
rationality (IR) constraints for quasi-linear utility u(v, v̂).

u(v, v̂)
def
= val(v, x(v̂))− p(v̂) ≤ u(v,v) = val(v, x(v))− p(v) for all v, v̂ ∈ V (IC).

u(v,v) = val(v, x(v))− p(v) ≥ 0 for all v ∈ V (IR).

A mechanism is budget feasible if the agent’s payment to the seller is bounded by a budget B, i.e.,
p(v) ≤ B for all v ∈ V . The agent derives utility of −∞ when p(v) > B and the same quasi-linear
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utility of val(v, x(v)) − p(v), when p(v) ≤ B. We assume that agent’s budget B is public, i.e., the
budget B is known to the auctioneer2.

The type v is drawn from a joint distribution D, which is not completely known to the auctioneer and
which may admit correlation between different components vi and vj of v. The auctioneer only knows
marginal distributions Fi of D for each separate component i but does not know how these components
are correlated with each other. We assume that every distribution Fi is discrete and has finite support3

Vi. We use fi to denote the probability density function of the distribution Fi. We also slightly abuse
notations and use Fi to denote the respective cumulative density function. The joint support of all Fi is
V = ×ni=1Vi. We use Π to denote all possible distributions π supported on V that are consistent with
the marginal distributions F1, F2, · · · , Fn, i.e., Π =

{
π |
∑

v-i
π(vi,v-i) = fi(vi), ∀i ∈ [n], vi ∈ Vi

}
. The

goal is to design a truthful mechanism that maximizes auctioneer’s expected revenue in the worst case
with respect to the unknown joint distribution D. Formally, we want to find a truthful (budget feasible)
mechanism (x∗, p∗) such that

(x∗, p∗) ∈ argmax
(x,p)

min
π(x,p)
π∈Π

∑
v∈V

π(v)p(v). (1)

3 LP formulation

We begin by looking at equation (1) as a zero-sum game played between the auction designer and an
adversary, who gets to pick a distribution π with given marginals F1, · · · , Fn and whose objective is to
minimize the auctioneer’s revenue. We note that the strategy space of the auctioneer, i.e., the set of
truthful mechanisms given by x : V → X and p : V → R≥0, is convex (because a random mixture
of truthful mechanisms is a truthful mechanism itself) and is compact4. Similarly the strategy space
Π of the adversary (distribution player) is also a compact convex set. Thus the sets of both players’
mixed strategies coincide with their respective sets of pure strategies. Now, our two-player game admits
at least one mixed Nash equilibrium5, which is also a pure Nash equilibrium: M∗ = (x∗, p∗) for the
auctioneer player and π∗ for the adversary. This Nash equilibrium defines a unique value of a zero sum
game and, therefore, yields a solution to minmax problem (1).

We restrict our attention to the minimization problem of the distribution player for any fixed truthful
mechanism M = (x, p):

min
π∈Π

∑
v

p(v) · π(v). (2)

Note that this is a linear program, since Π is given by a set of linear inequalities. We also write a

2We note that optimal auction problem in a private budget setting is quite complex even in the single-item case. Thus
the public budget assumption is indeed necessary if our goal is to find settings with simple optimal auctions.

3Similar to [10] our results extend to the distributions with continuous type distributions.
4Indeed, as there are only finite number of types, one can think of a pair of allocation x and payment p functions as |V |

vectors in X and |V | real numbers in R≥0. Thus we get a natural notion of convergence and distance for the mechanisms.
As the set of truthful mechanisms is described by a finite set of not strict IC and IR inequalities, we conclude that truthful
mechanisms form a closed set. Note that allocation domain is compact and payment function of a truthful mechanism is
bounded by a constant, which makes the set of truthful mechanisms to be bounded as well. Therefore, it is compact.

5by Glicksberg Theorem for continues games
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corresponding dual problem.

min
∑
v

p(v) · π(v) max
n∑
i=1

∑
vi

fi(vi) · λi(vi) (3)

s. t.
∑
v-i

π(vi,v-i) = fi(vi) dual var. λi(vi) s. t.

n∑
i=1

λi(vi) ≤ p(v) ∀v

π(v) ≥ 0 λi(vi) ∈ R

The value of the primal LP 3 is worst-case revenue Rev(M) of the mechanism M = (x, p). Intuitively,
the dual LP (3) captures the best additive approximation of the payment function p(v) of M with
{λi(vi), vi ∈ Vi}ni=1. The values of the primal and dual problems (3) are equal for any fixed truthful
mechanism M = (x, p). This allows us to convert the maxmin problem (1) to a maximization LP
problem:

max

n∑
i=1

∑
vi

fi(vi) · λi(vi) (4)

s. t.
n∑
i=1

λi(vi) ≤ p(v) ∀v; (x, p) : (IC),(IR); x(v) ∈ X.

One can solve LP (4) with standard polynomial time techniques to get an optimal auction in a variety
of settings. For example we can compute optimal auctions for buyer’s valuations such as additive, unit-
demand, budget additive and many other tractable settings which allow succinct LP description of X.
However, the optimal solution to these problems would normally require description proportional to the
size of the type domain |V | =

∏n
i=1 |Vi|, which makes it not efficient for problems with large number of

items. Thus a next most natural question is to find special classes of problems that admit succinct and
simple auctions in the correlation-robust framework.

4 Results and Proof Outline

Let us denote by Rev(Fi, Bi) the optimal revenue of a single-item single-bidder auction that can be
extracted from a single agent with a value distribution vi ∼ Fi and a public budget Bi. To simplify

notations we use Revi(Bi)
def
= Rev(Fi, Bi). We propose the following straightforward format of budget

feasible mechanisms: split the budget B =
∑n

i=1Bi across all items {Bi}ni=1; independently for each
item i run an optimal single-item auction with the revenue Revi(Bi). We call this class of budget feasible
mechanisms item-budgets mechanisms. We note that this is fairly large class of mechanisms, as there
are many ways in which the budget B can be split over the different items. We use Rev({Fi}ni=1, B) to
denote

max
n∑
i=1

Revi(Bi), s.t.
n∑
i=1

Bi ≤ B.

The solution to this problem gives us the expected revenue of the the optimal item-budgets mechanism.
Our main result from [20] says that the optimal correlation-robust mechanism is in fact an item-budgets
mechanism.

Theorem 4.1. The optimal correlation-robust mechanism has the revenue of Rev({Fi}ni=1, B).
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Proof Outline. We assume towards a contradiction that there is a mechanism M with higher
revenue. Then we fix M and consider the variables {λi(vi)}i∈[n],vi∈Vi in the dual LP (4), which give
an additive approximation (lower bound) on the payment function of M. It is natural to interpret
{λi(vi)}vi∈Vi as prices for each separate item i ∈ [n]. However, we need to deal with a problem that
variables {λi(vi)} can be negative. To this end, we regularize the problem by restricting the domain
vi ∈ Vi and ensure that {λi(vi)}i∈[n],vi∈Vi are non-negative and monotonically increasing for each i ∈
[n]. We construct an item-pricing mechanism such that its payment function is point-wise dominated
(upper bounded) by

∑
i∈[n] λi(vi). Finally, we get a contradiction by combining certain tight IC and IR

constraints for the item-pricing mechanism that together yield an upper bound on a weighted sum of
the payments of M.

5 Open Problems

Correlation-robust approach offers a new optimization framework for design and analysis of mechanisms.
It addresses some reasonable practical concerns and also brings closer Bayesian and worst-case
frameworks in algorithmic mechanism design literature. The results in our and Carroll’s papers seem
to be only initial steps in this framework and there are multiple open avenues for future work. Here, we
list a few interesting directions. We believe that the LP formulation approach developed in this paper
may find its applications as a useful initial step in the future work on this topic.

Beyond additive valuations. All current work on the topic has assumed buyer to have additive
valuations. It is intriguing research direction to investigate other types of valuations. It is
particularly interesting to understand optimal correlation-robust auctions for another class of
simple unit-demand valuations. It is not clear if the optimal mechanism will have to use lotteries
as sometimes is required in the Bayesian framework with independent values. Another natural
simple class of valuations to study is the class of budget additive buyer’s valuations.

Multiple buyers. In the monopolist problem we have only one buyer. It is important research
direction to extend the correlation-robust framework to the case of multiple buyers. Two possible
extensions include (i) a model where worst-case distributions for different buyers are independent
(ii) the distributions for different buyers can be correlated and the performance of a mechanism is
measured in the worst-case over this correlation. We believe that both extensions are reasonable
and deserve further investigation.

Computational complexity. Our LP formulation for the optimal correlation-robust auction has
Ω(
∏n
i=1 |Vi|) variables, which has exponential dependency on the input size

∑n
i=1 |Vi|. When can

we describe the optimal auction succinctly, i.e., find a polynomial in the input size representation?
We know that for additive buyer, and also for additive buyer with budget constraint the optimal
mechanism has a simple form and can be described and computed in polynomial time. But the
problem remains open for other settings, such as, e.g., the monopolist problem for unit-demand
buyer.

Approximation. In this work, we focused on studying exact optimality of mechanisms. Similar
to the case of independent prior distribution in the Bayesian model, it is reasonable to look
at approximately optimal mechanisms in the correlation-robust framework, especially in the
case when the exact optimum is too complex to implement in practice. Considering all the
complications of the optimal mechanisms in the Bayesian framework, it seems that we are lucky
to have simple optimal mechanism for the case of additive buyer. It is quite likely that this is not
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going to be the case in many other settings. In this situation a reasonable next step would be to
search for simple auctions that are approximately optimal in the correlation-robust framework.
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