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Among other solution concepts, the notion of the pure Nash equilibrium plays a central role
in Game Theory. Pure Nash equilibria in a game characterize situations with non-cooperative
deterministic players in which no player has any incentive to unilaterally deviate from the current
situation in order to achieve a higher payoff. Unfortunately, it is well known that there are games
that do not have pure Nash equilibria. Furhermore, even in games where the existence of equilibria
is guaranteed, their computation can be a computationally hard task. Such negative results
significantly question the importance of pure Nash equilibria as solution concepts that characterize
the behavior of rational players. Approximate pure Nash equilibria, which characterize situations
where no player can significantly improve her payoff by unilaterally deviating from her current
strategy, could serve as alternative solution concepts provided that they exist and can be computed
efficiently. In this letter, we discuss recent positive algorithmic results for approximate pure Nash
equilibria in congestion games.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity; J.4 [Computer Applications]: Social and Behavioral Sciences-Economics

General Terms: Algorithms, Economics, Theory
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1. PROBLEM STATEMENT AND RELATED WORK

In a weighted congestion game, players compete over a set of resources. Each player
has a positive weight. Each resource incurs a latency to all players that use it; this
latency depends on the total weight of the players that use the resource according
to a resource-specific, non-negative, and non-decreasing latency function. Among
a given set of strategies (over sets of resources), each player aims to select one
selfishly, trying to minimize her individual total cost, i.e., the sum of the latencies
on the resources in her strategy. Typical examples include congestion games in
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networks, where the network links correspond to the resources and each player has
alternative paths that connect two nodes as strategies.

The case of unweighted congestion games (i.e., when all players have unit weight)
has been widely studied in the literature. Rosenthal [1973] proved that these games
admit a potential function with the following remarkable property: the difference
in the potential value between two states (i.e., two snapshots of strategies) that
differ in the strategy of a single player is equal to the difference of the cost expe-
rienced by this player in these two states. This immediately implies the existence
of a pure Nash equilibrium. Any sequence of improvement moves by the players
strictly decreases the value of the potential and a state corresponding to a local
minimum of the potential will eventually be reached; this corresponds to a pure
Nash equilibrium. For weighted congestion games, potential functions are known
only in special cases (e.g., when the latency functions are linear; see [Fotakis et al.
2005]). Actually, in games with polynomial latency functions (e.g., quadratic), pure
Nash equilibria may not even exist [Goemans et al. 2005].

Potential functions provide only inefficient proofs of existence of pure Nash equi-
libria. Fabrikant et al. [2004] proved that the problem of computing a pure Nash
equilibrium in a (unweighted) congestion game is PLS-complete (informally, as hard
as it could be, given that there is an associated potential function). One conse-
quence of PLS-completeness results is that almost all states in some congestion
games are such that any sequence of players’ improvement moves that originates
from these states and reaches pure Nash equilibria is exponentially long. Efficient
algorithms are known only for special cases. For example, Fabrikant et al. [2004]
show that the Rosenthal’s potential function can be (globally) minimized efficiently
by a flow computation in unweighted congestion games in networks when the strat-
egy sets of the players are symmetric.

The above negative results have led to the study of the complexity of approximate
pure Nash equilibria. A p-approximate (pure Nash) equilibrium is a state, from
which no player has an incentive to deviate so that she decreases her cost by a
factor larger than p. The only positive result that appeared before our recent work
is due to Chien and Sinclair [2011] and applies to symmetric unweighted congestion
games: under mild assumptions on the latency functions and on the participation of
the players in the dynamics, the (1+€)-improvement dynamics converges to a (1+¢)-
approximate equilibrium after a polynomial number of steps. For non-symmetric
(unweighted) congestion games with more general latency functions, Skopalik and
Vécking [2008] show that the problem is still PLS-complete for any polynomially
computable p.

2. OUR CONTRIBUTION

In two recent papers [Caragiannis et al. 2011; 2012], we present algorithms for
computing O(1)-approximate equilibria in unweighted and weighted non-symmetric
congestion games with polynomial latency functions of constant maximum degree.
Our algorithm for unweighted congestion games is presented in [Caragiannis et al.
2011]. It computes (2 + ¢)-approximate pure Nash equilibria in games with lin-
ear latency functions, and d*t°(@) approximate equilibria for polynomial latency
functions of maximum degree d. The algorithm is surprisingly simple. Essentially,
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starting from an initial state, it computes a sequence of best-response player moves
of length that is bounded by a polynomial in the number of players and 1/e. The
sequence consists of phases so that the players that participate in each phase ex-
perience costs that are polynomially related. This is crucial in order to obtain
convergence in polynomial time. Another interesting part of our algorithm is that,
within each phase, it coordinates the best response moves according to two differ-
ent (but simple) criteria; this is the main tool that guarantees that the effect of a
phase to previous ones is negligible and, eventually, an approximate equilibrium is
reached.

In [Caragiannis et al. 2012], we significantly extend our techniques and obtain
an algorithm that computes O(1)-approximate equilibria in weighted congestion
games. For games with linear latency functions, the approximation guarantee is
3+T\/g + € for arbitrarily small € > 0; for latency functions of maximum degree
d > 2, it is d?¥t°(@ These results are much more surprising than they look at
first glance. Given that weighted congestion games with superlinear latency func-
tions do not admit potential functions, it is not even clear that O(1)-approximate
equilibria exist. In order to bypass this obstacle, we introduce a new class of po-
tential games (that we call U-games), which “approximate” weighted congestion
games with polynomial latency functions in the following sense. U-games of degree
1 are linear weighted congestion games. Each weighted congestion game of degree
d > 2 has a corresponding W-game of degree d defined in such a way that any
p-approximate equilibrium in the latter is a d!p-approximate equilibrium for the
former. As an intermediate new result, we obtain that weighted congestion games
with polynomial latency functions of degree d have d!-approximate equilibria. Our
algorithm is actually applied to U-games; it has a simple general structure similar to
our algorithm for unweighted games but has also important differences that are due
to the dependency of the cost of each player on the weights of other players. Again,
the algorithm essentially identifies a best-response sequence of player moves in the
V-game that leads to an approximate equilibrium; its length is now polynomial in
terms of the number of bits in the representation of the game and 1/e.

In both cases, the approximation guarantee is marginally higher than a quantity
that characterizes the potential function of the game; this quantity (which we call
the stretch) is defined as the worst-case ratio of the potential value at an almost
exact pure Nash equilibrium over the globally optimum potential value. For exam-
ple, the stretch is almost 2 for linear unweighted congestion games, 3+T‘/5 for linear
weighted congestion games, and d*+°(9) for U-games of degree d > 2. A more thor-
ough literature review, the detailed description of the algorithms, and the analysis
details can be found in [Caragiannis et al. 2011; 2012].
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