
A Simple Mechanism for a Budget-Constrained Buyer

YU CHENG, Duke University, USA
NICK GRAVIN, Shanghai University of Finance and Economics, China

KAMESH MUNAGALA, Duke University, USA
KANGNING WANG, Duke University, USA

We study a classic Bayesian mechanism design setting of monopoly problem for an additive buyer in the

presence of budgets. In this setting a monopolist seller with𝑚 heterogeneous items faces a single buyer and

seeks to maximize her revenue. The buyer has a budget and additive valuations drawn independently for

each item from (non-identical) distributions. We show that when the buyer’s budget is publicly known, the

better of selling each item separately and selling the grand bundle extracts a constant fraction of the optimal

revenue. When the budget is private, we consider a standard Bayesian setting where buyer’s budget 𝑏 is drawn

from a known distribution 𝐵. We show that if 𝑏 is independent of the valuations (which is necessary) and

distribution 𝐵 satisfies monotone hazard rate condition, then selling items separately or in a grand bundle is

still approximately optimal.
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1 INTRODUCTION
Revenue maximization is one of the fundamental problems in auction theory. The well-celebrated

result of Myerson [Myerson 1981] characterizes the revenue-maximizing mechanism when there is

only one item for sale. Specifically, in the single buyer case, the optimal solution is to post a take-it-

or-leave-it price. Since Myerson’s work, the optimal mechanism design problem has been studied

extensively in computer science literature and much progress has been made [Alaei et al. 2012; Cai

et al. 2012a,b, 2013a,b; Daskalakis 2015]. The problem of finding the optimal auction turned out to

be so much more complex than the single-item case. Unlike the Myerson’s single-item auction, the

optimum can use randomized allocations and price bundles of items already for two items and a

single buyer. It is also known that the gap between the revenue of the optimal randomized and

optimal deterministic mechanism can be arbitrarily large [Briest et al. 2010; Hart and Nisan 2013],

the optimal mechanism may require a menu with infinitely many options [Daskalakis et al. 2017;
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Manelli and Vincent 2007], and the revenue of the optimal auction may decrease when the buyer’s

valuation distributions move upwards (in the stochastic dominance sense) [Hart and Reny 2015].

In light of these negative results for optimal auction design, many recent papers focused on the

design of simplemechanisms that are approximately optimal. One such notable line of work initiated

by Hart and Nisan [Hart and Nisan 2017] concerns a basic and natural setting of monopoly problem

for the buyer with item values drawn independently from given distributions𝐷1, . . . , 𝐷𝑚 and whose

valuation for the sets of items is additive
1
(linear). A remarkable result by Babaioff et al. [Babaioff

et al. 2014] showed that the better mechanism of either selling items separately, or selling the grand

bundle extracts at least (1/6)-fraction of the optimal revenue. It was also observed [Babaioff et al.

2014; Hart and Nisan 2013; Rubinstein and Weinberg 2015] that the independence assumption on

the items is essentially necessary and without it no simple (any deterministic) mechanism cannot

be approximately optimal.

Auction design with budget constraints is an even harder problem. Because the buyer’s utility is

no longer quasi-linear, many standard concepts do not carry over
2
. For example, even for one buyer

and one item, the optimal mechanismmay require randomization when the budget is public [Chawla

et al. 2011], and may need an exponential-size menu (exponential in the number of possible budgets)

when the budget is private [Devanur and Weinberg 2017]. Despite many efforts [Abrams 2006; Bei

et al. 2012; Bhattacharya et al. 2010a,b; Borgs et al. 2005; Chakrabarty and Goel 2010; Chawla et al.

2011; Che and Gale 2000; Chen et al. 2011; Daskalakis et al. 2015; Devanur et al. 2013; Devanur

and Weinberg 2017; Dobzinski et al. 2012; Goel et al. 2015; Goldberg et al. 2001; Laffont and Robert

1996; Singer 2010], the theory of optimal auction design with budgets is still far behind the theory

without budgets.

In this paper, we investigate the effectiveness of simple mechanisms in the presence of budgets.

Our work is motivated by the following questions:

How powerful are simple mechanisms in the presence of budgets? In particular, is there
a simple mechanism that is approximately optimal for a budget-constrained buyer with
independent valuations?

To this endwe consider one of themost basic and natural settings of extensively studiedmonopoly

problem for an additive buyer. In this setting, a monopolistic seller sells𝑚 items to a single buyer.

The buyer has additive valuations drawn independently for each item from an arbitrary (non-

identical) distribution. We study two different budget settings: the public budget case where the
buyer has a fixed budget known to the seller, and the private budget case where the buyer’s budget
is drawn from a distribution. The seller wishes to maximize her revenue by designing an auction

subject to individual rationality, incentive compatibility, and budget constraints. We consider the

Bayesian setting where the buyer knows his budget and his values for each item, but the seller only

knows the prior distributions.

1.1 Our Results and Techniques
Our first result is that simple mechanisms remain approximately optimal when the buyer has a

public budget.

Theorem 1.1. For an additive buyer with a known public budget and independent valuations, the
better of selling each item separately and selling the grand bundle extracts a constant fraction of the
optimal revenue.

1
A buyer has additive valuations if his value for a set of items is equal to the sum of his values for the items in the set.

2
E.g., the classic VCG mechanism may not be implementable and social efficiency may not be achievable in the budgeted-

setting [Singer 2010].
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Theorem 1.1 is among the few positive results in budget-constrained settings that hold for

arbitrary distributions. Before our work, it is not clear that any mechanism extracting a constant

fraction of the optimal revenue can be computed in polynomial time.

In Sections 3 and 4, we present two different approaches to prove Theorem 1.1. Both approaches

truncate the valuation distribution 𝑉 according to the budget 𝑏 (in different ways) and then relate

the revenues of the optimal/simple mechanisms on the truncated distribution to the revenues on the

original valuations. The first approach uses the main result of [Babaioff et al. 2014] in a black-box

way, and the second approach adapts the duality-based framework developed in [Cai et al. 2016].

It is worth pointing out that many of our structural lemmas hold for correlated valuations

as well. Using these lemmas, we can generalize Theorem 1.1 to allow the buyer to have weakly

correlated valuations. We call a distribution𝑉 weakly correlated if it is the result of conditioning an

independent distribution 𝑉 on the sum of 𝑣 ∼ 𝑉 being at most 𝑐: 𝑉 = 𝑉| (∑ 𝑣𝑖 ≤𝑐) (See Definition 2.1

for the formal definition).

Corollary 1.2. Let 𝑉 be a weakly correlated distribution. For an additive buyer with a public
budget and valuations drawn from 𝑉 , the better of selling separately and selling the grand bundle
extracts a constant fraction of the optimal revenue.

In Section 5, we examine the private budget setting. The budget 𝑏 is no longer fixed but is

drawn from a distribution 𝐵. The seller only knows the prior distribution 𝐵 but not the value of 𝑏.

We first show that if the valuations can be correlated with the budget, the problem is at least as

hard as budget-free mechanism design with correlated valuations, where simple mechanisms are

known to be ineffective. In light of this negative result, we focus on the setting where the budget

distribution 𝐵 is independent of the valuations 𝑉 . In this setting, we show that simple mechanisms

are approximately optimal when the budget distribution satisfies the monotone hazard rate (MHR)

condition.

Theorem 1.3. When the budget distribution 𝐵 is MHR, the better mechanism of pricing items
separately and selling a grand bundle achieves a constant fraction of the optimal revenue.

We will show that it is sufficient to pretend the buyer has a public budget 𝑏∗ = E𝑏∼𝐵 [𝑏]. The
proof of Theorem 1.3 uses the MHR condition, as well as the fact that for a public budget 𝑏, the

(budget-constrained) optimal revenue is nondecreasing in 𝑏, but optimal revenue divided by 𝑏 is

nonincreasing in 𝑏.

1.2 Related Work
The most closely related to ours are the following two lines of work.

Simple Mechanisms. In a line of work initiated by Hart and Nisan [Babaioff et al. 2014; Cai

and Zhao 2017; Chawla and Miller 2016; Hart and Nisan 2017; Li and Yao 2013], [Babaioff et al.

2014] first showed that for an additive buyer with independent valuations, either selling separately

or selling the grand bundle extracts a constant fraction of the optimal revenue. This was later

extended to multiple buyers [Yao 2015], as well as buyers with more general valuations (e.g., sub-

additive [Rubinstein and Weinberg 2015], valuations with a common-value component [Bateni

et al. 2015], and valuations with complements [Eden et al. 2017]). Others have studied the trade-off

between the complexity and approximation ratio of an auction, along with the design of small-menu

mechanisms in various settings [Babaioff et al. 2017; Cheng et al. 2015; Dughmi et al. 2014; Hart

and Nisan 2013; Tang and Wang 2017].
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Auctions for Budget-Constrained Buyers. There has been a lot of work studying the impact

of budget constraints on mechanism design. Most of the earlier work required additional assump-

tions on the valuations distributions, like regularity or monotone hazard rate ([Bhattacharya et al.

2010b; Che and Gale 2000; Laffont and Robert 1996; Pai and Vohra 2014]). We mention a few results

that work for arbitrary distributions. For public budgets, [Chawla et al. 2011] designed approxi-

mately optimal mechanisms for several single-parameter settings and multi-parameter settings

with unit-demand buyers (our paper deals with additive buyers). For private budgets, [Devanur and

Weinberg 2017] characterized the structure of the optimal mechanism for one item and one buyer,

and showed its menu complexity to be exponential in the number of possible budgets. [Daskalakis

et al. 2015] gave a constant-factor approximation for additive bidders whose private budgets can be

correlated with their values. However, they require the buyers’ valuation distribution to be given

explicitly, which is of exponential size in our setting. There are also approximation and hardness

results in the prior-free setting [Abrams 2006; Borgs et al. 2005; Devanur et al. 2013], as well as

designing Pareto optimal auctions [Dobzinski et al. 2012; Goel et al. 2015].

Other Related Work. Our work concerns revenue maximization for additive buyer. Another

natural and basic scenario extensively studied in the literature concerns buyers with unit-demand

preferences [Chawla et al. 2007, 2010, 2015]. Our work studies monopoly problem for additive bud-

geted buyer in the standard Bayesian approach. In this framework, the prior distribution is known

to the seller and typically is assumed to be independent. Parallel to this framework, the (budgeted)

additive monopoly problem has been studied in a new robust optimization framework [Carroll

2017; Gravin and Lu 2018]. Another group of papers on budget feasible mechanism design [Bei

et al. 2012; Chen et al. 2011; Singer 2010; Singla and Krause 2013] studies different reverse auction

settings and are concerned with value maximization.

2 PRELIMINARIES
2.1 Optimal Mechanism Design
We study the design of optimal auctions with one buyer, one seller, and𝑚 heterogeneous items

labeled by [𝑚] = {1, . . . ,𝑚}. There is exactly one copy of each item, and the items are indivisible.

The buyer has additive valuation (𝑣 (𝑆) = ∑
𝑗 ∈𝑆 𝑣 ({𝑖}) for any set 𝑆 ⊆ [𝑚]) and a publicly known

budget 𝑏 3
.

We use 𝑣 ∈ R𝑚 to denote the buyer’s valuations, where 𝑣 𝑗 is the buyer’s value for item 𝑗 . We

consider the Bayesian setting of the problem, in which the buyer’s values are drawn from a discrete
4

distribution 𝑉 . Let 𝑇 = supp(𝑉 ) be the set of all possible valuation profiles in 𝑉 . We use 𝑓 (𝑡) for
any 𝑡 ∈ 𝑇 to denote the probability mass function of𝑉 : 𝑓 (𝑡) = Pr𝑣∼𝑉 [𝑣 = 𝑡]. Let𝑇𝑗 = supp(𝑉𝑗 ). We

say the valuation distribution 𝑉 is independent across items if it can be expressed as 𝑉 = ×𝑗𝑉𝑗 .

We assume the buyer is risk-neutral and has quasi-linear utility when the payment does not

exceed his budget. Let 𝜋 : 𝑇 → [0, 1]𝑚 and 𝑝 : 𝑇 → R denote the allocation and payment rules

of a mechanism respectively. That is, when the buyer reports type 𝑡 , the probability that he will

receive item 𝑗 is 𝜋 𝑗 (𝑡), and his expected payment is 𝑝 (𝑡) (over the randomness of the mechanism).

Thus, if the buyer has type 𝑡 , his (expected) value for reporting type 𝑡 ′ is exactly 𝜋 (𝑡 ′)⊤𝑡 , 5 and his

3
In this paper, we mostly focus on the public budget case. So we define notations and discuss backgrounds assuming the

buyer has a public budget.

4
Like previous work on simple and approximately optimal mechanisms, our results extend to continuous types as well,

since we can discretize the types so that the revenues are arbitrarily close (see, e.g., [Cai et al. 2016] for a more detailed

discussion).

5
We use 𝑥⊤𝑦 =

∑𝑚
𝑖=1 𝑥𝑖𝑦𝑖 to denote the inner product of two vectors 𝑥 and 𝑦.
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(expected) utility for reporting type 𝑡 ′ is

𝑢 (𝑡, 𝑡 ′) =
{
𝜋 (𝑡 ′)⊤𝑡 − 𝑝 (𝑡 ′) if 𝑝 (𝑡 ′) ≤ 𝑏, and

−∞ otherwise.

By the revelation principle, it is sufficient to consider mechanisms that are incentive compatible

(i.e., “truthful”). A mechanism 𝑀 = (𝜋, 𝑝) is (interim) incentive-compatible (IC) if the buyer is

incentivized to tell the truth (over the randomness of mechanism), and (interim) individually

rational (IR) if the buyer’s expected utility is non-negative whenever he reports truthfully. We use

∅ for the option of not participating in the auction (𝜋 (∅) = 0, 𝑝 (∅) = 0), and let 𝑇 + = 𝑇 ∪ {∅}.
Then, the IC and IR constraints can be unified as follows:

𝑢 (𝑡, 𝑡) ≥ 𝑢 (𝑡, 𝑡 ′) ∀𝑡 ∈ 𝑇, 𝑡 ′ ∈ 𝑇 +.

To summarize, when the seller faces a single buyer with budget 𝑏 and valuation drawn from 𝑉 , the

optimal mechanism𝑀∗ = (𝜋∗, 𝑝∗) is the optimal solution to the following (exponential-size) linear

program (LP):

maximize

∑
𝑡 ∈𝑇 𝑓 (𝑡)𝑝 (𝑡)

subject to 𝜋 (𝑡 ′)⊤𝑡 − 𝑝 (𝑡 ′) ≤ 𝜋 (𝑡)⊤𝑡 − 𝑝 (𝑡), ∀𝑡 ∈ 𝑇, 𝑡 ′ ∈ 𝑇 + .
0 ≤ 𝜋 𝑗 (𝑡) ≤ 1, ∀𝑡 ∈ 𝑇, 𝑗 ∈ [𝑚] .
𝑝 (𝑡) ≤ 𝑏, ∀𝑡 ∈ 𝑇 .

𝜋 (∅) = 0, 𝑝 (∅) = 0.

(1)

A mechanism is called ex-post IC, ex-post IR, or ex-post budget-preserving respectively, if the

corresponding constraints hold for all possible outcomes, without averaging over the randomness

in the mechanism. We will show the better of pricing each item separately and pricing the grand

bundle, which is a deterministic ex-post mechanism, can extract a constant fraction of the revenue

of any interim mechanism.

2.2 Simple Mechanisms
For a buyer with valuation distribution𝑉 , we frequently use the following notations in our analysis:

• Rev(𝑉 ): the revenue of the optimal truthful mechanism.

• SRev(𝑉 ): the maximum revenue obtainable by pricing each item separately.

• BRev(𝑉 ): the maximum revenue obtainable by pricing the grand bundle.

• Rev
𝑏 (𝑉 ): the revenue of the optimal truthful mechanism, when the buyer has a budget 𝑏.

• SRev
𝑏 (𝑉 ): the maximum revenue that can be extracted by pricing each item separately, when

the buyer has a public budget 𝑏.

• BRev
𝑏 (𝑉 ): the maximum revenue that can be extracted by pricing the grand bundle, when

the buyer has a public budget 𝑏.

We know that SRev(𝑉 ) is obtained by running Myerson’s optimal auction separately for each item,

and BRev(𝑉 ) is obtained by running Myerson’s auction viewing the grand bundle as one item.

Similarly, BRev
𝑏 (𝑉 ) is a single-parameter problem as well, with the minor change that the posted

price is at most 𝑏.

The case of SRev
𝑏 (𝑉 ) is more complicated. For example, when a budgeted buyer of type 𝑡 ∈ R𝑚

participates in an auction with posted price 𝑝 𝑗 for each item 𝑗 , he will maximize his utility by

solving a Knapsack problem. There exists a poly-time computable mechanism that extracts a

constant fraction of SRev
𝑏 (𝑉 ) (e.g., [Bhattacharya et al. 2010a]). However, in this paper, we only

need the mild assumption that the buyer will purchase a maximal subset of items – if the buyer

values an item more than its price and he can still afford it, then he will buy it.

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: August 2020.
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2.3 Weakly Correlated Distributions
We call a distribution like 𝑉 weakly correlated if the only condition causing the correlation is a cap

on its sum.

Definition 2.1. For an 𝑚-dimensional independent distribution 𝑉 and a threshold 𝑐 > 0, we

remove the probability mass on any 𝑡 ∈ supp(𝑉 ) with ∥𝑡 ∥
1
> 𝑐 and renormalize. Let𝑉 := 𝑉| ( ∥𝑣 ∥

1
≤𝑐)

denote the resulting distribution. Formally,

Pr

�̂�∼𝑉
[�̂� = 𝑡] = Pr

𝑣∼𝑉
[𝑣 = 𝑡 | ∥𝑣 ∥

1
≤ 𝑐], ∀𝑡 ∈ supp(𝑉 ).

Weakly correlated distributions arise naturally in our analysis. We will show that if the buyer’s

valuations are weakly correlated, then the better of selling separately and selling the grand bundle

is approximately optimal, and this holds with or without a (public) budget constraint.

2.4 First-Order Stochastic Dominance
Stochastic dominance is a partial order between random variables. A random variable 𝑋 with

supp(𝑋 ) ⊆ R (weakly) first-order stochastically dominates another randomvariable𝑌 with supp(𝑌 ) ⊆
R if and only if

Pr[𝑋 ≥ 𝑎] ≥ Pr[𝑌 ≥ 𝑎] for all 𝑎 ∈ R.
This notion of stochastic dominance can be extended to multi-dimensional distributions. In this

paper, we use the notion of coordinate-wise dominance.

Definition 2.2. Given two𝑚-dimensional distributions 𝐷1 and 𝐷2, we say 𝐷1 coordinate-wise
stochastic dominates 𝐷2 (𝐷1 ⪰ 𝐷2 or𝐷2 ⪯ 𝐷1) if there exists a randomized mapping 𝑓 : supp(𝐷1) →
supp(𝐷2) such that 𝑓 (𝑥) ∼ 𝐷2 when 𝑥 ∼ 𝐷1, and 𝑓 (𝑥) ≤ 𝑥 coordinate-wise for all 𝑥 ∈ supp(𝐷1)
with probability 1.

This notion helps us express the monotonicity of optimal revenues in some cases. For example,

we can show that SRev(𝑉1) ≥ SRev(𝑉2) when 𝑉1 ⪰ 𝑉2. The mapping 𝑓 allows us to couple the

draws 𝑣1 ∼ 𝑉1 and 𝑣2 ∼ 𝑉2, so that for a set of fixed prices, if the buyer buys an item under 𝑣2, he

will also buy it under 𝑣1.

3 PUBLIC BUDGET
In this section, we focus on the public budget case and prove our main result (Theorem 1.1). The

buyer has a fixed budget 𝑏 and valuations drawn from an independent distribution 𝑉 .

Theorem 1.1. Rev𝑏 (𝑉 ) ≤ 8SRev
𝑏 (𝑉 ) + 23BRev

𝑏 (𝑉 ).

It follows that the better of SRev
𝑏 (𝑉 ) and BRev

𝑏 (𝑉 ) is at least Rev
𝑏 (𝑉 )
31

.
6

Overview of Our Approach. Instead of taking the Lagrangian dual of LP (1) to derive an

upper bound on the optimal objective value Rev
𝑏 (𝑉 ), we adopt a more combinatorial approach.

Intuitively, we come up with a charging argument that splits Rev
𝑏 (𝑉 ) and charges each part to

either SRev
𝑏 (𝑉 ) or BRev𝑏 (𝑉 ). Here is the proof outline:

First, we partition the buyer types 𝑡 ∈ supp(𝑉 ) into two sets: high-value types where ∥𝑡 ∥∞ ≥ 𝑏

and low-value types where ∥𝑡 ∥∞ < 𝑏. Note that we can already charge the revenue of high-value

types to BRev
𝑏 (𝑉 ): If we sell the grand bundle at price 𝑏, all high-value types will exhaust their

budgets.

6
We do not optimize the constants in our proofs. In Section 4, we will give an alternative proof of Theorem 1.1 that shows

Rev
𝑏 (𝑉 ) ≤ 5SRev

𝑏 (𝑉 ) + 6BRev
𝑏 (𝑉 ) , thus improving this constant from 31 to 11.
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We now examine the low-value types. Let𝑉 ′
denote the valuation distribution conditioned on the

buyer having a low-value type. Observe that𝑉 ′
is independent because it is defined using ℓ∞-norm,

and we can remove the budget to upper bound its revenue. For a budget-free additive buyer with

independent valuations, we can apply the main result of [Babaioff et al. 2014], which states that

either selling separately or grand bundling works for 𝑉 ′
: Rev(𝑉 ′) = 𝑂 (SRev(𝑉 ′) + BRev(𝑉 ′)).

Next, we will relate SRev(𝑉 ′), BRev(𝑉 ′) to SRev
𝑏 (𝑉 ′), BRev𝑏 (𝑉 ′). We can assume the sum of

𝑣 ′ ∼ 𝑉 ′
is usually much smaller than 𝑏. Similar to standard tail bounds, if the sum ∥𝑣 ′∥

1
is often

small and the random variables are independent and bounded (each 𝑣 ′𝑗 is at most 𝑏), then ∥𝑣 ′∥
1

must have an exponentially decaying tail. Therefore, we can add back the budget, because the sum

∥𝑣 ′∥
1
, which upper bounds the buyer’s payment, is rarely very large.

Finally, we will show that SRev
𝑏 (𝑉 ′) = 𝑂 (SRev𝑏 (𝑉 )) and BRev

𝑏 (𝑉 ′) ≤ BRev
𝑏 (𝑉 ). The BRev

statement is easy to verify, but the SRev statement is more tricky. The monotonicity of SRev(𝑉 ) in
the budget-free case (see Section 2.4) no longer holds when there is a budget. Fortunately, we can

pay a factor of two and circumvent this non-monotonicity due to budget constraints.

We will now make our intuitions formal and present three key lemmas. Throughout the paper,

we will always use 𝑉 ′ = 𝑉| ∥𝑣 ∥∞≤𝑏 as defined below.

Definition 3.1. Fix an𝑚-dimensional distribution𝑉 = ×𝑉𝑗 . Let𝑉
′
be the independent distribution

where every coordinate of 𝑉 is capped at 𝑏. That is, 𝑉 ′ = ×𝑗𝑉
′
𝑗 , and 𝑉 ′

𝑗 is given by Pr𝑉 ′
𝑗
[𝑥] =

Pr𝑣𝑗∼𝑉𝑗

[
min(𝑣 𝑗 , 𝑏) = 𝑥

]
.

Lemma 3.2. Rev
𝑏 (𝑉 ) ≤ Rev(𝑉 ′) + BRev

𝑏 (𝑉 ).

Lemma 3.3. AssumeBRev𝑏 (𝑉 ′) < 𝑏
10
. Then,BRev(𝑉 ′) ≤ 3BRev

𝑏 (𝑉 ′) and SRev(𝑉 ′) ≤ SRev
𝑏 (𝑉 ′)+

4BRev
𝑏 (𝑉 ′).

Lemma 3.4. BRev
𝑏 (𝑉 ′) ≤ BRev

𝑏 (𝑉 ) and SRev𝑏 (𝑉 ′) ≤ 2SRev
𝑏 (𝑉 ).

We defer the proofs of these lemmas to Sections 3.1, 3.2, and 3.3, and first use them to prove

Theorem 1.1.

Proof of Theorem 1.1. If BRev
𝑏 (𝑉 ′) ≥ 𝑏

10
, then the theorem holds because the optimal revenue

Rev
𝑏 (𝑉 ) is at most the budget 𝑏. By Lemma 3.4, BRev

𝑏 (𝑉 ) ≥ BRev
𝑏 (𝑉 ′) ≥ 𝑏

10
≥ Rev

𝑏 (𝑉 )
10

.

We now assumeBRev
𝑏 (𝑉 ′) < 𝑏

10
. The theorem follows straightforwardly fromLemmas 3.2, 3.3, 3.4,

and a black-box use of the main result of [Babaioff et al. 2014].

Rev
𝑏 (𝑉 ) ≤ Rev(𝑉 ′) + BRev

𝑏 (𝑉 ) (Lemma 3.2)

≤ 4SRev(𝑉 ′) + 2BRev(𝑉 ′) + BRev
𝑏 (𝑉 ) ([Babaioff et al. 2014])

≤ 4SRev
𝑏 (𝑉 ′) + 22BRev

𝑏 (𝑉 ′) + BRev
𝑏 (𝑉 ) (Lemma 3.3)

≤ 8SRev
𝑏 (𝑉 ) + 22BRev

𝑏 (𝑉 ) + BRev
𝑏 (𝑉 ) (Lemma 3.4)

= 8SRev
𝑏 (𝑉 ) + 23BRev

𝑏 (𝑉 ). □

3.1 Proof of Lemma 3.2
We will prove the following lemma, which is a generalization of Lemma 3.2.

Lemma 3.5. Fix 𝑏 > 0 and 0 < 𝑐 ≤ 𝑏. For any distribution 𝑉 with supp(𝑉 ) ⊆ supp(𝑉 ) and
Pr

𝑉
[𝑡] ≥ Pr𝑉 [𝑡] for any ∥𝑡 ∥

1
≤ 𝑐 , we have Rev𝑏 (𝑉 ) ≤ (𝑏/𝑐) · BRev𝑏 (𝑉 ) + Rev(𝑉 ).

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: August 2020.
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Lemma 3.2 follows immediately from Lemma 3.5 by choosing 𝑐 = 𝑏 and𝑉 = 𝑉 ′
, because capping

each coordinate at 𝑐 does not create new support, and does not decrease probability mass on any

type 𝑡 whose sum is at most 𝑐 .

Intuitively, Lemma 3.5 upper bounds the optimal revenue by splitting the buyer types 𝑡 into two

sets: when ∥𝑡 ∥
1
> 𝑐 , we upper bound the seller’s revenue by the budget 𝑏; when ∥𝑡 ∥

1
≤ 𝑐 , we run

the optimal mechanism for Rev
𝑏 (𝑉 ).

Proof of Lemma 3.5. Let 𝑇 and 𝑇 , 𝑓 and 𝑓 denote the support and probability density function

of 𝑉 and 𝑉 respectively. Let𝑀∗ = (𝜋∗, 𝑝∗) be the optimal mechanism that obtains Rev
𝑏 (𝑉 ). Recall

that 𝜋∗
and 𝑝∗ are the allocation and payment rules, and (𝜋∗, 𝑝∗) is the optimal solution to LP (1)

for 𝑓 and 𝑇 .

We split the optimal revenue into two parts:

Rev
𝑏 (𝑉 ) =

∑︁
𝑡 ∈𝑇

𝑓 (𝑡)𝑝∗ (𝑡) =
∑︁

∥𝑡 ∥
1
>𝑐

𝑓 (𝑡)𝑝∗ (𝑡) +
∑︁

∥𝑡 ∥
1
≤𝑐

𝑓 (𝑡)𝑝∗ (𝑡).

Since 𝑝∗ (𝑡) ≤ 𝑏, the first term is at most 𝑏
∑

∥𝑡 ∥
1
>𝑐 𝑓 (𝑡) = 𝑏 · Pr [∥𝑣 ∥

1
> 𝑐] ≤ (𝑏/𝑐)BRev𝑏 (𝑉 ),

because we can sell the grand bundle at price 𝑝 = 𝑐 .

The second term is at most Rev(𝑉 ), because 𝑀∗
is a feasible solution to the LP for 𝑇 ⊆ 𝑇 . In

other words,𝑀∗
satisfies the IC and IR constraints for 𝑉 . The revenue of 𝑉 is at least the revenue

of𝑀∗
on 𝑉 :

Rev(𝑉 ) ≥
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)𝑝∗ (𝑡) ≥
∑︁

𝑡 ∈𝑇, ∥𝑡 ∥
1
≤𝑐

𝑓 (𝑡)𝑝∗ (𝑡) ≥
∑︁

𝑡 ∈𝑇, ∥𝑡 ∥
1
≤𝑐

𝑓 (𝑡)𝑝∗ (𝑡).

Combining the upper bounds, we get Rev
𝑏 (𝑉 ) ≤ (𝑏/𝑐)BRev𝑏 (𝑉 ) + Rev(𝑉 ). □

3.2 Proof of Lemma 3.3
Lemma 3.3 states that when the sum of 𝑣 ′ ∼ 𝑉 ′

is often small, the budget does not matter too much

for 𝑉 ′
. Intuitively, because each coordinate of 𝑣 ′ ∼ 𝑉 ′

is independent and upper bounded by 𝑏, a

concentration inequality implies that the sum has an exponentially decaying tail. Therefore, the

budget constraint is less critical because it is very unlikely that the buyer’s value for the grand

bundle is much larger than the budget.

We formalize this intuition by proving the following lemma, which is similar to standard tail

bounds. The main difference is that, instead of knowing the mean of ∥𝑣 ′∥
1
is small, we only know

that BRev
𝑏 (𝑉 ′) is small.

Lemma 3.6. If 𝑉 ′ is independent and ∥𝑣 ′∥∞ ≤ 𝑐 for all 𝑣 ′ ∼ 𝑉 ′, then

Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ 𝑥 + 𝑦 + 𝑐] ≤ Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ 𝑥] · Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ 𝑦] for all 𝑥,𝑦 > 0.

In particular, if Pr𝑣′∼𝑉 ′ [∥𝑣 ′∥
1
≥ 𝑐] ≤ 𝑞, then for all integer 𝑘 ≥ 0,

Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ (2𝑘 + 1)𝑐] ≤ 𝑞𝑘 Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ 𝑐] .

We defer the proof of Lemma 3.6 to Appendix A, and first use this tail bound to prove Lemma 3.3.

Proof of Lemma 3.3. Let 𝑐 = 𝑏 and 𝑞 = 1

10
. We know that Pr [∥𝑣 ′∥

1
≥ 𝑐] ≤ 𝑞 from the assump-

tion BRev
𝑏 (𝑉 ′) ≤ 𝑏

10
.

First observe that BRev
𝑏 (𝑉 ′) = max𝑝≤𝑏 (𝑝 · Pr [∥𝑣 ′∥

1
≥ 𝑝]) . If we price the grand bundle at

price 𝑝 where (2𝑘 + 1)𝑐 < 𝑝 ≤ (2𝑘 + 3)𝑐 for some 𝑘 ≥ 0, by Lemma 3.6, the revenue is at most

𝑝 · Pr[∥𝑣 ′∥
1
≥ (2𝑘 + 1)𝑐] ≤ (2𝑘 + 3)𝑐 · 𝑞𝑘Pr[∥𝑣 ′∥

1
≥ 𝑐] ≤ (2𝑘 + 3)𝑞𝑘BRev𝑏 (𝑉 ′).
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As (2𝑘 + 3)𝑞𝑘 ≤ 3 for any integer 𝑘 , we have BRev(𝑉 ′) ≤ 3BRev
𝑏 (𝑉 ′).

For SRev(𝑉 ′), similar to Lemma 3.2, we can upper bound the revenue by allowing the seller to

extract full revenue if ∥𝑣 ′∥
1
> 𝑐 , and running the optimal budget-constrained mechanism when

∥𝑣 ′∥
1
≤ 𝑐:

SRev(𝑉 ′) ≤ SRev
𝑐 (𝑉 ′) + E [∥𝑣 ′∥

1
| ∥𝑣 ′∥

1
≥ 𝑐]

≤ SRev
𝑐 (𝑉 ′) +

∞∑︁
𝑘=1

(2𝑘 + 3)𝑐 · Pr[∥𝑣 ′∥
1
≥ (2𝑘 + 1)𝑐]

≤ SRev
𝑐 (𝑉 ′) +

∞∑︁
𝑘=0

(2𝑘 + 3)𝑞𝑘BRev𝑐 (𝑉 ′)

≤ SRev
𝑐 (𝑉 ′) + 4BRev

𝑐 (𝑉 ′). □

3.3 Proof of Lemma 3.4
Lemma 3.4 states that SRev

𝑏 (𝑉 ) and BRev
𝑏 (𝑉 ) are both (up to constant factors) monotone in 𝑉 .

We prove a more general version of the lemma that does not require 𝑉 to be independent. Recall

that 𝑉 ⪯ 𝑉 means 𝑉 is coordinate-wise stochastically dominated by 𝑉 .

Lemma 3.7. Fix 𝑏 > 0 and 0 < 𝑐 ≤ 𝑏. For any distribution 𝑉 ⪯ 𝑉 , BRev𝑐 (𝑉 ) ≤ BRev
𝑏 (𝑉 ) and

SRev
𝑐 (𝑉 ) ≤ max

(
1, 2𝑐

𝑏

)
SRev

𝑏 (𝑉 ).

Lemma 3.4 follows directly from Lemma 3.7, by choosing 𝑐 = 𝑏 and 𝑉 = 𝑉 ′
.

Intuitively, we would like to prove that SRev
𝑏 (𝑉 ) ≤ SRev

𝑏 (𝑉 ) for any 𝑉 ⪯ 𝑉 . While this is true

in the budget-free case (See Section 2.4), it is actually false in the presence of a budget. We give a

counterexample in Appendix B. Fortunately, we can prove SRev
𝑏 (𝑉 ′) ≤ 2SRev

𝑏 (𝑉 ). The intuition
is that we can cap the price of each item at 𝑏/2, then the buyer either spends at least 𝑏/2, or will
purchase everything he likes.

Proof of Lemma 3.7. First consider BRev. Because 𝑐 ≤ 𝑏 and 𝑉 ⪯ 𝑉 ,

BRev
𝑐 (𝑉 ) = max

𝑝≤𝑐

(
𝑝 · Pr

�̂�∼𝑉
[∥�̂� ∥

1
≥ 𝑝]

)
≤ max

𝑝≤𝑏

(
𝑝 · Pr

𝑣∼𝑉
[∥𝑣 ∥

1
≥ 𝑝]

)
= BRev

𝑏 (𝑉 ).

For SRev, let𝑀 be the optimal mechanism that achieves SRev
𝑐 (𝑉 ) by pricing each item separately.

We construct a mechanism𝑀 to mimic𝑀 except the prices are capped at 𝑏/2. Consider applying𝑀
to a buyer with valuation drawn from 𝑉 and a budget 𝑏. As 𝑉 ⪯ 𝑉 , we can couple the realizations

�̂� ∼ 𝑉 and 𝑣 ∼ 𝑉 such that �̂� ≤ 𝑣 (coordinate-wise). For every (�̂�, 𝑣) pair:
• If𝑀 gets a revenue of at least

𝑏
2
on 𝑣 . This is at least 𝑏

2𝑐
-fraction of the revenue𝑀 gets on �̂� ,

because the latter is at most 𝑐 .

• If𝑀 gets a revenue less than
𝑏
2
on 𝑣 , then the buyer has enough budget left to buy any item.

Therefore, the buyer can buy everything he wants. Because �̂� ≤ 𝑣 , the revenue of𝑀 on 𝑣 is

at least that of𝑀 on �̂� .

Thus, 𝑀 can get at least min(1, 𝑏
2𝑐
)-fraction of the revenue that 𝑀 gets on �̂� , which implies

SRev(𝑉 ) ≤ max

(
1, 2𝑐

𝑏

)
SRev

𝑏 (𝑉 ). □

4 PUBLIC BUDGET ANDWEAKLY CORRELATED VALUATIONS
In this section, we present an alternative approach to prove our main result (Theorem 1.1). Recall

that the buyer has a public budget 𝑏 and valuations drawn from an independent distribution 𝑉 .

Theorem 1.1 (stronger version). Rev𝑏 (𝑉 ) ≤ 5SRev
𝑏 (𝑉 ) + 6BRev

𝑏 (𝑉 ).
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Overview of Our Approach. We will truncate the input distribution 𝑉 in a different way:

instead of truncating 𝑣 ∼ 𝑉 in ℓ∞-norm (as in Section 3), we will truncate 𝑣 in ℓ1-norm. This

truncation produces a correlated distribution 𝑉 . The upshot of truncating in ℓ1-norm is that we

always have ∥�̂� ∥
1
≤ 𝑏, so 𝑉 can ignore the budget. In addition, as in Section 3, we can relate

the optimal revenue to the revenue of 𝑉 (Lemma 3.5), and we can relate the revenue of simple

mechanisms on 𝑉 back to revenue of simple mechanisms on 𝑉 (Lemma 3.7).

We still need to argue that simple mechanisms work well for𝑉 . This is the main challenge in this

approach. Because𝑉 is correlated, we cannot apply the result of [Babaioff et al. 2014] in a black-box

way. Instead, we need to modify the analysis of previous work [Babaioff et al. 2014; Cai et al. 2016;

Li and Yao 2013] and build on the key ideas like “core-tail” decomposition. More specifically, we

generalize the duality-based framework developed in [Cai et al. 2016] to handle the specific type of

correlation 𝑉 has.

Weakly Correlated Valuations. It is worth mentioning that our structural lemmas (Lem-

mas 3.5 and 3.7) do not require the input distribution to be independent. This is why our techniques

can be applied to more general settings. For example, in this section, we will generalize Theorem 1.1

to handle weakly correlated valuations (see Definition 2.1 for the formal definition).

Corollary 1.2. Let 𝑉 be a weakly correlated distribution (Definition 2.1). We have Rev
𝑏 (𝑉 ) ≤

5SRev
𝑏 (𝑉 ) + 6BRev

𝑏 (𝑉 ).

Our main contribution in this section is Lemma 4.1. Lemma 4.1 shows that for any weakly

correlated distribution 𝑉 (see Definition 2.1), the better of SRev(𝑉 ) and BRev(𝑉 ) is a constant
approximation to the optimal revenue Rev(𝑉 ).

Lemma 4.1. Fix 𝑐 > 0. Let 𝑉 = 𝑉| ( ∥𝑣 ∥
1
≤𝑐) for an independent distribution 𝑉 . We have Rev(𝑉 ) ≤

5SRev(𝑉 ) + 4BRev(𝑉 ).

We defer the proof of Lemma 4.1 to Appendix C. We first use these lemmas to prove Theorem 1.1

and Corollary 1.2.

Proof of Theorem 1.1 and Corollary 1.2. If min𝑣∼𝑉 ∥𝑣 ∥
1
≥ 𝑏/2, then the seller can price the

grand bundle at 𝑏/2 and the buyer always buys it. In this case, the revenue is 𝑏/2 and Rev
𝑏 (𝑉 ) ≤

𝑏 ≤ 2BRev
𝑏 (𝑉 ). Thus, we focus on the more interesting case where Pr𝑣∼𝑉 [∥𝑣 ∥1 ≤ 𝑏/2] > 0.

7

Let 𝑉 := 𝑉| ( ∥𝑣 ∥
1
≤𝑐) for 𝑐 = 𝑏/2. We will reuse Lemmas 3.5 and 3.7 from Section 3. We can

reuse both lemmas because they do not require 𝑉 or 𝑉 to be independent, 𝑉 does not modify the

small-sum part of 𝑉 , and 𝑉 ⪯ 𝑉 (which we will prove as Lemma D.2 in Appendix D).

Rev
𝑏 (𝑉 ) ≤ (𝑏/𝑐) · BRev𝑏 (𝑉 ) + Rev(𝑉 ) (Lemma 3.5)

≤ 2BRev
𝑏 (𝑉 ) + 5SRev(𝑉 ) + 4BRev(𝑉 ) (Lemma 4.1)

= 2BRev
𝑏 (𝑉 ) + 5SRev

𝑐 (𝑉 ) + 4BRev
𝑐 (𝑉 ) (∥�̂� ∥

1
≤ 𝑐)

≤ 2BRev
𝑏 (𝑉 ) + 5SRev

𝑏 (𝑉 ) + 4BRev
𝑏 (𝑉 ). (Lemma 3.7)

We now prove Corollary 1.2. Intuitively, Corollary 1.2 holds because simple mechanisms work

well for weakly correlated valuations, and the the weakly-correlated notion is closed under further

capping the sum.

7
Throughout the paper, when we consider the conditional distribution 𝑉 := 𝑉| ( ∥𝑣∥

1
≤𝑐 ) , we will always have 𝑐 >

min𝑣∈supp(𝑉 ) ∥𝑣 ∥1, so that the event we condition on happens with non-zero probability.
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Let𝑉 = 𝑉| ( ∥𝑣 ∥
1
≤𝑐2) be the input distribution. If 𝑐2 ≤ 𝑏, then we can remove the budget constraint

and apply Lemma 4.1 directly. If 𝑐2 > 𝑏, then we can cap𝑉 at 𝑐1 = 𝑏/2 to obtain a weakly correlated

distribution 𝑉 . One can verify that Lemmas 3.5 and 3.7 still hold for 𝑉 and 𝑉 , and Lemma 4.1 holds

for 𝑉 . The only difference is that we need to show 𝑉| ( ∥𝑣 ∥
1
≤𝑐1) ⪯ 𝑉| ( ∥𝑣 ∥

1
≤𝑐2) for 𝑐1 ≤ 𝑐2. We will

prove this (Lemma D.1) in Appendix D. □

5 PRIVATE BUDGET
In this section, we consider the case where the budget 𝑏 is no longer fixed but instead drawn from

a distribution 𝐵. We assume 𝐵 is independent of 𝑉 in light of the following observations:

If we allow 𝐵 and𝑉 to be correlated, one natural model is that the buyer’s budget 𝑏 is first drawn

from 𝐵, and then depending on the value of 𝑏, the buyer’s valuations are drawn independently

for each item. In this case, the problem is at least as hard as finding (approximately) optimal

mechanisms for arbitrarily correlated valuations in the budget-free setting. Consider an instance in

which all possible budgets are larger than max𝑣∼𝑉 ∥𝑣 ∥
1
so they are irrelevant. However, the budget

can still be used as a signal (or a correlation device) to produce correlated valuations. It is known

that for correlated distributions, the better of selling separately and bundling together [Hart and

Nisan 2013], or even the best partition-based mechanism [Babaioff et al. 2014], does not offer a

constant approximation.

Another natural model is we draw 𝑣 ∼ 𝑉 first where the 𝑉𝑖 ’s are independent, and then draw 𝑏

depending on 𝑣 . This is also at least as hard as the correlated-valuation case, since we can make

𝑏 = 0 if we want 𝑣 in the correlated distribution and 𝑏 > ∥𝑣 ∥
1
if we do not.

These negative observations motivate us to study the private budget setting when the budget

distribution 𝐵 is independent of the valuation distributions 𝑉 .

5.1 Monotone-Hazard-Rate Budgets
We focus on the case where the budget is independent of valuations, and it is drawn from a continu-

ous
8
monotone-hazard-rate (MHR) distribution. Let𝑔(·) and𝐺 (·) be the probability density function

and cumulative distribution function of 𝐵. The MHR condition says
𝑔 (𝑏)

1−𝐺 (𝑏) is non-decreasing in 𝑏.

Lemma 5.1. Let 𝑏∗ be the expectation of an MHR distribution 𝐵. Let 𝑀∗ be the optimal mechanism
for a buyer with a public budget 𝑏∗. Then in expectation,𝑀∗ extracts at least 1

2𝑒
-fraction of the expected

optimal revenue when the buyer has a private budget drawn from 𝐵.

Proof. Let 𝑅(𝑏,𝑉 ) denote the expected revenue of𝑀∗
when the buyer has a public budget 𝑏 and

valuations drawn from 𝑉 . Let 𝑅(𝐵,𝑉 ) = E𝑏∼𝐵 [𝑅(𝑏,𝑉 )] denote the expected revenue of𝑀∗
when

the buyer’s budget is drawn from 𝐵.

𝑅(𝐵,𝑉 ) =
∫
𝑏

𝑔(𝑏)𝑅(𝑏,𝑉 )d𝑏 ≥
∫
𝑏≥𝑏∗

𝑔(𝑏)𝑅(𝑏,𝑉 )d𝑏

=

∫
𝑏≥𝑏∗

𝑔(𝑏)𝑅(𝑏∗,𝑉 )d𝑏 ≥ 𝑒−1 · 𝑅(𝑏∗,𝑉 ).

The second last step uses 𝑅(𝑏,𝑉 ) = 𝑅(𝑏∗,𝑉 ) when 𝑏 ≥ 𝑏∗, because 𝑀∗
provides a menu of

allocation/payment pairs for the buyer to choose from; A buyer with budget 𝑏 ≥ 𝑏∗ can afford any

option on the menu so he will choose the same option as if he had budget 𝑏∗. The last inequality
comes from the fact that for any MHR distribution 𝐵, Pr𝑏∼𝐵 [𝑏 ≥ 𝑏∗] ≥ 𝑒−1 (see, e.g., [Barlow and

Marshall 1965]).

8
If the distribution is a discrete MHR distribution, similar results still hold. For discrete distributions we have Pr𝑏∼𝐵 [𝑏 ≥
⌊𝑏∗ ⌋ ] ≥ 𝑒−1 instead of Pr𝑏∼𝐵 [𝑏 ≥ 𝑏∗ ] ≥ 𝑒−1.
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Let Rev
𝐵 (𝑉 ) denote the optimal revenue we can extract when the buyer has private budgets

drawn from 𝐵.

Rev
𝐵 (𝑉 ) ≤

∫
𝑏<𝑏∗

𝑔(𝑏)Rev𝑏 (𝑉 )d𝑏 +
∫
𝑏≥𝑏∗

𝑔(𝑏)Rev𝑏 (𝑉 )d𝑏

≤
∫
𝑏<𝑏∗

𝑔(𝑏)Rev𝑏∗ (𝑉 )d𝑏 +
∫
𝑏≥𝑏∗

𝑔(𝑏) · 𝑏
𝑏∗

· Rev𝑏∗ (𝑉 )d𝑏

≤ Rev
𝑏∗ (𝑉 ) +

∫
𝑏
𝑔(𝑏)𝑏d𝑏
𝑏∗

· Rev𝑏∗ (𝑉 ) = 2Rev
𝑏∗ (𝑉 ).

The first line is because the seller can only do better if she knows the buyer’s budget 𝑏. The second

line uses the fact that Rev
𝑏 (𝑉 ) ≤ Rev

𝑏∗ (𝑉 ) when 𝑏 < 𝑏∗ and Rev𝑏 (𝑉 ) ≤ 𝑏
𝑏∗Rev

𝑏∗ (𝑉 ) when 𝑏 > 𝑏∗.
The third line is because 𝑏∗ = E [𝑏].

We have Rev
𝑏 (𝑉 ) ≤ Rev

𝑏∗ (𝑉 ) when 𝑏 < 𝑏∗ because a buyer with budget 𝑏∗ can afford all options
from the menu that achieves Rev

𝑏 (𝑉 ). When 𝑏 > 𝑏∗, consider the menu that achieves Rev
𝑏 (𝑉 ) and

cap all prices at 𝑏∗. A buyer with budget 𝑏 > 𝑏∗ either chooses the same option as if he had budget

𝑏∗, or chooses a different option whose price must be 𝑏∗, and therefore Rev
𝑏 (𝑉 ) ≤ 𝑏

𝑏∗Rev
𝑏∗ (𝑉 ).

By definition 𝑅(𝑏∗,𝑉 ) = Rev
𝑏∗ (𝑉 ). Therefore, 𝑅(𝐵,𝑉 ) ≥ 1

2𝑒
Rev

𝐵 (𝑉 ). □

Theorem 1.3. When the budget distribution 𝐵 is MHR, the better of pricing items separately and
bundling them together achieves a constant fraction of the optimal revenue.

Proof. By pretending the budget is 𝑏∗,

SRev
𝐵 (𝑉 ) ≥

∫
𝑏≥𝑏∗

𝑔(𝑏)SRev𝑏∗ (𝑉 )d𝑏 ≥ 1

𝑒
SRev

𝑏∗ (𝑉 ).

Similarly, BRev
𝐵 (𝑉 ) ≥ 1

𝑒
BRev

𝑏∗ (𝑉 ). Therefore, by Theorem 1.1 and Lemma 5.1, SRev
𝐵 (𝑉 ) +

BRev
𝐵 (𝑉 ) = Ω(SRev𝑏∗ (𝑉 ) + BRev

𝑏∗ (𝑉 )) = Ω(Rev𝑏∗ (𝑉 )) = Ω(Rev𝐵 (𝑉 )). □

6 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we investigated the effectiveness of simple mechanisms in the presence of budgets,

and showed that for an additive buyer with independent valuations and a public budget, either

selling separately or selling the grand bundle gives a constant approximation to optimal revenue.

The area of designing simple and approximately optimal auctions with budget constraints is still

largely unexplored. Our work leaves many natural follow-up questions. We only considered selling

to a single buyer. An immediate open question is whether our results can be extended to multiple

bidders. A generalization to multiple bidders is known in the budget-free case [Cai et al. 2016; Yao

2015].

Question 1. Is there a simple mechanism that is approximately optimal for multiple additive buyers,
when each buyer has the same public budget 𝑏?

For private budgets where the budget is independent of the valuations, we showed that if the

budget distribution satisfies monotone hazard rate, then we can extract a constant fraction of the

revenue. The general case with arbitrary budget distributions appears to be nontrivial and is an

interesting avenue for future work.

Question 2. Is there a simple mechanism that is approximately optimal for an additive buyer with
private budgets, when the budget distribution is independent of the valuations?
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A PROOF OF THE CONCENTRATION LEMMA IN SECTION 3.2
In this section, we prove Lemma 3.6. We first restate it for convenience.

Lemma 3.6. If 𝑉 ′ is independent and ∥𝑣 ′∥∞ ≤ 𝑐 for all 𝑣 ′ ∼ 𝑉 ′, then

Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ 𝑥 + 𝑦 + 𝑐] ≤ Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ 𝑥] · Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ 𝑦] for all 𝑥,𝑦 > 0.
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In particular, if Pr𝑣′∼𝑉 ′ [∥𝑣 ′∥
1
≥ 𝑐] ≤ 𝑞, then for all integer 𝑘 ≥ 0,

Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ (2𝑘 + 1)𝑐] ≤ 𝑞𝑘 Pr

𝑣′∼𝑉 ′
[∥𝑣 ′∥

1
≥ 𝑐] .

Proof. Consider the probability of ∥𝑣 ′∥
1
≥ 𝑥 + 𝑦 + 𝑐 conditioned on ∥𝑣 ′∥

1
≥ 𝑥 . We will show

this probability is at most the probability of ∥𝑣 ′∥
1
≥ 𝑦.

For every 𝑣 ′ with ∥𝑣 ′∥
1
≥ 𝑥 , there is a unique 𝑗 ∈ [𝑚] where ∑𝑗−1

𝑖=1
𝑣 ′𝑖 < 𝑥 but

∑𝑗

𝑖=1
𝑣 ′𝑖 ≥ 𝑥 . Now

𝑣 ′𝑗 is at most 𝑐 , so for the total sum to be at least 𝑥 + 𝑦 + 𝑐 , the remaining sum

∑𝑚
𝑖=𝑗+1 𝑣

′
𝑖 must be at

least 𝑦. Due to the independence of 𝑉 ′
, this probability is the same conditioned on any values of

(𝑣 ′
1
, . . . , 𝑣 ′𝑗 ). Formally,

Pr[∥𝑣 ′∥
1
≥ 𝑥 + 𝑦 + 𝑐] =

𝑚∑︁
𝑗=1

Pr

[
∥𝑣 ′∥

1
≥ 𝑥 + 𝑦 + 𝑐 ∧

𝑗−1∑︁
𝑖=1

𝑣 ′𝑖 < 𝑥 ∧
𝑗∑︁

𝑖=1

𝑣 ′𝑖 ≥ 𝑥

]
≤

𝑚∑︁
𝑗=1

Pr

[
𝑚∑︁

𝑖=𝑗+1
𝑣 ′𝑖 ≥ 𝑦 ∧

𝑗−1∑︁
𝑖=1

𝑣 ′𝑖 < 𝑥 ∧
𝑗∑︁

𝑖=1

𝑣 ′𝑖 ≥ 𝑥

]
=

𝑚∑︁
𝑗=1

Pr

[
𝑚∑︁

𝑖=𝑗+1
𝑣 ′𝑖 ≥ 𝑦

]
· Pr

[
𝑗−1∑︁
𝑖=1

𝑣 ′𝑖 < 𝑥 ∧
𝑗∑︁

𝑖=1

𝑣 ′𝑖 ≥ 𝑥

]
= Pr[∥𝑣 ′∥

1
≥ 𝑦] · Pr[∥𝑣 ′∥

1
≥ 𝑥] .

The second statement can be proved inductively using the first statement. The inductive step

chooses 𝑥 = 𝑐 and 𝑦 = (2𝑘 − 1)𝑐 . □

B REVENUE NON-MONOTONICITY FOR SEPARATE SELLING TO A BUDGETED
BUYER

Weprovide an examplewhere𝑉1 ⪯ 𝑉2 but SRev
𝑏 (𝑉1) > SRev

𝑏 (𝑉2). Intuitively, a budget-constrained
buyer solves a Knapsack problem when deciding which items to purchase, and the total volume

(i.e, payment) of the optimal Knapsack solution is not monotone in the item values. Increasing the

value of a cheap item might incentivize the buyer to purchase this item instead of a more expensive

one, if the buyer does not have enough budget to buy both items.

Consider an auction with 3 items. 𝑇1 and 𝑇2 are two matrices defined as

𝑇1 =


2 0 0

0 1 1

2 1 0

 , 𝑇2 =


2 0 0

0 1 1

2 2 0

 .
The rows of𝑇1 are the support of𝑉1, and similarly, the rows of𝑇2 are the support of𝑉2. Each row is

associated with a probability of
1

3
. Assume the budget 𝑏 = 2.

One of the optimal mechanisms that obtains SRev
𝑏 (𝑉1) = 2 is to price the items at (2, 1, 1). A

buyer of type 1 and 3 will buy the first item, and a buyer of type 2 will buy the last two items. This

is optimal because SRev
𝑏
cannot exceed the budget.

However, SRev
𝑏 (𝑉2) < 2. To prove it, we first notice SRev

𝑏 (𝑉2) ≤ 2 because 𝑏 = 2. It means

we must get a revenue of 2 from all buyer types to make SRev
𝑏 (𝑉2) = 2. Thus, we must price the

first item at 2, and each of the last two items at 1 to satisfy this constraint for the first two types.

Nevertheless, with this pricing strategy, we only get revenue 1 for the last buyer type (2, 2, 0),
because he will only buy the second item. This shows SRev

𝑏 (𝑉2) < 2 = SRev
𝑏 (𝑉1).

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: August 2020.



16 Yu Cheng, Nick Gravin, Kamesh Munagala, and Kangning Wang

C SIMPLE MECHANISMS FORWEAKLY CORRELATED VALUATIONS
This section is devoted to proving Lemma 4.1. Lemma 4.1 states that simple mechanisms (more

specifically, the better of SRev(𝑉 ) and BRev(𝑉 )) are approximately optimal for any weakly corre-

lated distribution 𝑉 = 𝑉| ( ∥𝑣 ∥
1
≤𝑐) . Note that there is no budget in this section, only a cap 𝑐 on the

ℓ1-norm of �̂� ∼ 𝑉 .

Our approach builds on the ideas like “core-tail decomposition” from previous works that show

Rev(𝑉 ) = 𝑂 (SRev(𝑉 ) + BRev(𝑉 )) for independent valuations 𝑉 [Babaioff et al. 2014; Cai et al.

2016; Hart and Nisan 2017; Li and Yao 2013]. More specifically, we generalize the duality-based

framework developed in [Cai et al. 2016] to handle weakly correlated distributions. The idea of [Cai

et al. 2016] is to Lagrangify only the incentive constraints, then guess the Lagrangian multipliers to

derive an upper bound on the maximum revenue.

We first highlight some of the difficulties in extending previous works to correlated distributions.

(1) When the distribution is independent, one can upper bound the maximum revenue by

Myerson’s virtual value of the bidder’s favorite item, plus the sum of the values of the
remaining items. For correlated distributions, the virtual value of the favorite item depends

on the other items.

(2) In the core part of core-tail decomposition, we need the total value of the low-value items

to concentrate around its expectation, so we can upper bound their values by BRev (by

selling the grand bundle at a price slightly lower than that expectation). When the valuations

are independent, we can show the variance is small, which may not be true for correlated

distributions.

These difficulties are not surprising, because Lemma 4.1 cannot hold for arbitrary correlated

distributions. As shown in [Briest et al. 2010; Hart and Nisan 2013], for correlated distributions, the

gap between the best deterministic and randomized mechanisms can be unbounded. Hence, we

have to take advantage of the special properties of 𝑉 .

Notations. In this Section, because 𝑉 = 𝑉| ( ∥𝑣 ∥
1
≤𝑐) is the distribution we focus on, we use 𝑇 to

denote the support of 𝑉 . Given a (correlated) distribution 𝐷 , we use 𝐷 𝑗 to denote 𝐷’s marginal dis-

tribution on the 𝑗-th coordinate, and 𝐷−𝑗 to denote 𝐷’s marginal (joint) distribution on coordinates

other than 𝑗 . Let𝑇𝑗 and𝑇−𝑗 be the support of𝑉𝑗 and𝑉−𝑗 respectively. In addition, we will make use

of the conditional distributions𝑉𝑗 |�̂�−𝑗=𝑡−𝑗 and𝑉−𝑗 |�̂�𝑗=𝑡 𝑗 ; The former is the distribution of �̂� 𝑗 for �̂� ∼ 𝑉

conditioned on �̂�−𝑗 = 𝑡−𝑗 , and the latter is the distribution of �̂�−𝑗 conditioned on 𝑣 𝑗 = 𝑡 𝑗 . Abusing

notation, we use 𝑓 (𝑡), 𝑓 (𝑡 𝑗 ), 𝑓 (𝑡−𝑗 ), 𝑓 (𝑡 𝑗 |𝑡−𝑗 ), and 𝑓 (𝑡−𝑗 |𝑡 𝑗 ) to denote the probability mass function

of the correlated and conditional distributions we mentioned in this section. When the value of

item 𝑗 is drawn from 𝑓 (𝑡 𝑗 |𝑡−𝑗 ), we use 𝜑 (𝑡 𝑗 |𝑡−𝑗 ) to denote item 𝑗 ’s (ironed) Myerson’s virtual value.

For a bidder type 𝑡 ∈ 𝑇 ⊆ R𝑚 , the favorite item of 𝑡 is the one with the highest value (with

ties broken lexicographically). We write 𝑡 ∈ 𝑅 𝑗 if and only if 𝑗 is the favorite item of type 𝑡 after

tie-breaking. Formally,

𝑅 𝑗 = {𝑡 ∈ 𝑇 | 𝑗 is the smallest index with 𝑡 𝑗 ≥ 𝑡𝑘 for all 𝑘 ∈ [𝑚]}.

Proof of Lemma 4.1. We extend the duality framework in [Cai et al. 2016] to handle correlated

distributions. As we will see in Section C.2, we can upper bound the optimal revenue of 𝑉 into

three components. Recall that 𝜋 is the allocation rule. For notational convenience, we write 𝑟 for
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SRev(𝑉 ). Notice that in Single we get 𝜑 (𝑡 𝑗 |𝑡−𝑗 ) rather than 𝜑 (𝑡 𝑗 ).

Rev(𝑉 ) ≤
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)𝜑 (𝑡 𝑗 |𝑡−𝑗 ) · 1
[
𝑡 ∈ 𝑅 𝑗

]
(Single)

+
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)𝑡 𝑗 · 1
[
𝑡 ∉ 𝑅 𝑗

]
· 1

[
𝑡 𝑗 ≤ 2𝑟

]
(Core)

+
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)𝑡 𝑗 · 1
[
𝑡 ∉ 𝑅 𝑗

]
· 1

[
𝑡 𝑗 > 2𝑟

]
. (Tail)

Lemma 4.1 follows directly from the statements of Lemmas C.1, C.2, and C.3.

Lemma C.1. Single ≤ 2BRev(𝑉 ) + SRev(𝑉 ).

Lemma C.2. Tail ≤ SRev(𝑉 ).

Lemma C.3. Core ≤ 2BRev(𝑉 ) + 3SRev(𝑉 ).

Organization. For completeness, we first recall the approach in [Cai et al. 2016] in Section C.1.

In Section C.2, we show that there exists a choice of the Lagrangian multipliers that Rev(𝑉 ) can be

upper bounded by Single + Core + Tail. Lemmas C.1, C.2, and C.3 are proved in Section C.3.

C.1 The Duality Based Approach in [Cai et al. 2016].
The optimal mechanism𝑀∗ = (𝜋∗, 𝑝∗) for 𝑉 is the optimal solution to the following LP:

maximize

∑
𝑡 ∈𝑇 𝑓 (𝑡)𝑝 (𝑡)

subject to 𝜋 (𝑡 ′)⊤𝑡 − 𝑝 (𝑡 ′) ≤ 𝜋 (𝑡)⊤𝑡 − 𝑝 (𝑡), ∀𝑡 ∈ 𝑇, 𝑡 ′ ∈ 𝑇 + .
0 ≤ 𝜋 𝑗 (𝑡) ≤ 1, ∀𝑡 ∈ 𝑇, 𝑗 ∈ [𝑚] .
𝜋 (∅) = 0, 𝑝 (∅) = 0.

(2)

We can upper bound the optimal primal value by Lagrangifying the incentive constraints.

Rev(𝑉 ) = min

_≥0
max

𝜋,𝑝
𝐿(_, 𝜋, 𝑝),

where the Lagrangian dual of LP (2) is given by

𝐿(_, 𝜋, 𝑝) =
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)𝑝 (𝑡) +
∑︁

𝑡 ∈𝑇,𝑡 ′∈𝑇 +
_(𝑡, 𝑡 ′)

[
(𝜋 (𝑡) − 𝜋 (𝑡 ′))⊤𝑡 − (𝑝 (𝑡) − 𝑝 (𝑡 ′))

]
=
∑︁
𝑡 ∈𝑇

𝑝 (𝑡)
[
𝑓 (𝑡) −

∑︁
𝑡 ′∈𝑇 +

_(𝑡, 𝑡 ′) +
∑︁
𝑡 ′∈𝑇

_(𝑡 ′, 𝑡)
]

+
∑︁
𝑡 ∈𝑇

𝜋 (𝑡)⊤
[ ∑︁
𝑡 ′∈𝑇 +

_(𝑡, 𝑡 ′)𝑡 −
∑︁
𝑡 ′∈𝑇

_(𝑡 ′, 𝑡)𝑡 ′
]
.

Because the 𝑝 (𝑡)’s are unconstrained variables, any dual solution with a finite value must have

𝑓 (𝑡) −
∑︁
𝑡 ′∈𝑇 +

_(𝑡, 𝑡 ′) +
∑︁
𝑡 ′∈𝑇

_(𝑡 ′, 𝑡) = 0, ∀𝑡 ∈ 𝑇 . (3)
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From now on, we restrict our attention to only dual solution with finite values. We can then simplify

𝐿(_, 𝜋, 𝑝) by replacing

∑
𝑡 ′∈𝑇 + _(𝑡, 𝑡 ′) with 𝑓 (𝑡) +∑

𝑡 ′∈𝑇 _(𝑡 ′, 𝑡) to get rid of 𝑇 +
:

𝐿(_, 𝜋, 𝑝) =
∑︁
𝑡 ∈𝑇

𝜋 (𝑡)⊤
[
𝑓 (𝑡)𝑡 +

∑︁
𝑡 ′∈𝑇

_(𝑡 ′, 𝑡)𝑡 −
∑︁
𝑡 ′∈𝑇

_(𝑡 ′, 𝑡)𝑡 ′
]

=
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)𝜋 (𝑡)⊤
[
𝑡 − 1

𝑓 (𝑡)
∑︁
𝑡 ′∈𝑇

_(𝑡 ′, 𝑡) (𝑡 ′ − 𝑡)
]
.

We write Φ(𝑡) as a shorthand for the term in the bracket: Φ(𝑡) = 𝑡 − 1

𝑓 (𝑡 )
∑

𝑡 ′∈𝑇 _(𝑡 ′, 𝑡) (𝑡 ′ − 𝑡).
We know that 𝐿(_, 𝜋, 𝑝) = ∑

𝑡 ∈𝑇 𝑓 (𝑡)𝜋 (𝑡)⊤Φ(𝑡) ≥ Rev(𝑉 ) is an upper bound on the revenue of the

optimal mechanism. We can rewrite Equation (3) as

𝑓 (𝑡) +
∑︁
𝑡 ′∈𝑇

_(𝑡 ′, 𝑡) =
∑︁
𝑡 ′∈𝑇 +

_(𝑡, 𝑡 ′) =
∑︁
𝑡 ′∈𝑇

_(𝑡, 𝑡 ′) + _(𝑡,∅), ∀𝑡 ∈ 𝑇 .

[Cai et al. 2016] interpreted these constraints as flow conservation constraints. Let _(𝑡, 𝑡 ′) ≥ 0

denote the amount of flow 𝑡 sends to 𝑡 ′. The left-hand side is the total flow received by 𝑡 , where

every type 𝑡 receives 𝑓 (𝑡) units of flow from the source; and the right-hand side is the total flow

send out from 𝑡 , with all the excess flow sent to the sink (∅).
They proposed a “canonical flow” which was shown to be a good guess for the Lagrangian

multipliers. It turns out the same dual solution is sufficient to prove our results for correlated

distributions. In the next section, we recall this canonical flow and use it to derive an upper bound

on the optimal revenue.

C.2 Canonical Flow for Weakly Correlated Distributions
Recall that 𝑡 ∈ 𝑅 𝑗 if and only if 𝑗 is the favorite item of type 𝑡 . Formally, there exists _(𝑡, 𝑡 ′) ≥ 0

such that

• For every 𝑗 , all flows entering 𝑅 𝑗 are from the source, and all flows leaving 𝑅 𝑗 are to ∅.
• For 𝑡, 𝑡 ′ ∈ 𝑅 𝑗 , we can have _(𝑡 ′, 𝑡) > 0 only if 𝑡 and 𝑡 ′ only differ on the 𝑗-th coordinate.

When there is no ironing, _(𝑡 ′, 𝑡) > 0 only if 𝑡 ′𝑗 is the smallest value larger than 𝑡 𝑗 in 𝑇𝑗 .

Lemma C.4. There exists a set of the Lagrangian multipliers _ that satisfies the flow conservation
constraints, such that

(1) If 𝑡 ∉ 𝑅 𝑗 , then Φ𝑗 (𝑡) = 𝑡 𝑗 .
(2) If 𝑡 ∈ 𝑅 𝑗 , then Φ𝑗 (𝑡) ≤ 𝜑 𝑗 (𝑡 𝑗 |𝑡−𝑗 ), where 𝜑 (𝑡 𝑗 |𝑡−𝑗 ) is item 𝑗 ’s (ironed) Myerson’s virtual value

conditioned on 𝑡−𝑗 .

Proof. Recall that Φ(𝑡) = 𝑡 − 1

𝑓 (𝑡 )
∑

𝑡 ′∈𝑇 _(𝑡 ′, 𝑡) (𝑡 ′ − 𝑡). For (1), assume that 𝑡 ∈ 𝑅𝑘 for some

𝑘 ≠ 𝑗 . If _(𝑡 ′, 𝑡) > 0, it must be the case that 𝑡 and 𝑡 ′ are only different on the 𝑘-th coordinate, so

(𝑡 − 𝑡 ′) 𝑗 = 0 and Φ𝑗 (𝑡) = 𝑡 𝑗 .

Now we prove (2). We first consider a canonical flow without ironing. Fix any 𝑗 and 𝑡 ∈ 𝑅 𝑗 . If 𝑡 𝑗
is the largest value in 𝑇𝑗 , then _(𝑡 ′, 𝑡) = 0 for all 𝑡 ′ and Φ𝑗 (𝑡) = 𝑡 𝑗 . If 𝑡 𝑗 is not the largest value in 𝑇𝑗 ,

𝑡 receives flow from the source and exactly one other node 𝑡 ′ where 𝑡 ′−𝑗 = 𝑡−𝑗 , and 𝑡 ′𝑗 is the smallest

value larger than 𝑡 𝑗 in 𝑇𝑗 . The total flow from 𝑡 ′ to 𝑡 includes the flows from the source to all 𝑡∗
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with 𝑡∗−𝑗 = 𝑡−𝑗 and 𝑡∗𝑗 > 𝑡 𝑗 :

_(𝑡 ′, 𝑡) =
∑︁
𝑡∗∈𝑇

𝑓 (𝑡∗) · 1
[
𝑡∗−𝑗 = 𝑡−𝑗 ∧ 𝑡∗𝑗 > 𝑡 𝑗

]
= 𝑓 (𝑡−𝑗 )

∑︁
𝑡∗
𝑗
∈𝑇𝑗 ,𝑡

∗
𝑗
>𝑡 𝑗

𝑓 (𝑡∗𝑗 |𝑡−𝑗 ) = 𝑓 (𝑡−𝑗 )
(
1 − 𝐹 (𝑡 𝑗 |𝑡−𝑗 )

)
.

Substituting _(𝑡 ′, 𝑡) in the expression of Φ(𝑡), this implies

Φ𝑗 (𝑡) = 𝑡 𝑗 −
1

𝑓 (𝑡)
∑︁
𝑡∗∈𝑇

_(𝑡∗, 𝑡) (𝑡∗𝑗 − 𝑡 𝑗 )

= 𝑡 𝑗 −
1

𝑓 (𝑡) _(𝑡
′, 𝑡) (𝑡 ′𝑗 − 𝑡 𝑗 )

= 𝑡 𝑗 −
𝑓 (𝑡−𝑗 )

(
1 − 𝐹 (𝑡 𝑗 |𝑡−𝑗 )

)
𝑓 (𝑡−𝑗 ) 𝑓 (𝑡 𝑗 |𝑡−𝑗 )

(𝑡 ′𝑗 − 𝑡 𝑗 ) = 𝜑 (𝑡 𝑗 |𝑡−𝑗 ).

Finally, we show that the flow can be modified to implement Myerson’s ironing procedure. The

analysis on modifying the flow to reflect ironing is given in [Cai et al. 2016], and we include it here

for completeness. Suppose there exist two types 𝑡, 𝑡 ′ ∈ 𝑅 𝑗 such that 𝑡 𝑗 < 𝑡 ′𝑗 but Φ𝑗 (𝑡) > Φ𝑗 (𝑡 ′). We

can add a cycle of 𝑤 units of flow between 𝑡 and 𝑡 ′, that is, we increase both _(𝑡, 𝑡 ′) and _(𝑡 ′, 𝑡)
by 𝑤 . Notice that the resulting flow is still valid, and Φ(𝑡∗) for all 𝑡∗ ≠ 𝑡, 𝑡 ′ remain unchanged.

Moreover, the change does not alter Φ𝑘 (𝑡) or Φ𝑘 (𝑡 ′) for all 𝑘 ≠ 𝑗 . The only effect of the change is

to increase Φ𝑗 (𝑡) by 𝑤 (𝑡 ′𝑗 − 𝑡 𝑗 )/𝑓 (𝑡), and decrease Φ𝑗 (𝑡 ′) by 𝑤 (𝑡 ′𝑗 − 𝑡 𝑗 )/𝑓 (𝑡 ′). Therefore, we can
choose𝑤 so that Φ𝑗 (𝑡) = Φ𝑗 (𝑡 ′) without changing any other virtual values.

Repeating this process allows us to simulate Myerson’s ironing procedure. One technical issue is

that we may cut off an ironing interval of 𝑓 (𝑡 𝑗 |𝑡−𝑗 ) because it leaves the region 𝑅 𝑗 . However, we

know that truncating an ironing interval 𝐼 to 𝐼 ′ ⊆ 𝐼 from below can only decrease the virtual value

on 𝐼 ′. This is because the average virtual value on 𝐼 ′ is smaller than the average virtual value on 𝐼 ,

otherwise we would not iron the entire interval 𝐼 in the first place. □

C.3 Upper Bounds for Single, Core, and Tail

We decompose the upper bound we had in the previous section into three components. Recall that

𝑟 = SRev(𝑉 ). By Lemma C.4, we know that

Rev(𝑉 ) ≤
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)𝜋 (𝑡)⊤Φ(𝑡)

=
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)
(
𝜑 (𝑡 𝑗 |𝑡−𝑗 ) · 1

[
𝑡 ∈ 𝑅 𝑗

]
+ 𝑡 𝑗 · 1

[
𝑡 ∉ 𝑅 𝑗

] )
≤
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)𝜑 (𝑡 𝑗 |𝑡−𝑗 ) · 1
[
𝑡 ∈ 𝑅 𝑗

]
(Single)

+
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)𝑡 𝑗 · 1
[
𝑡 ∉ 𝑅 𝑗

]
· 1

[
𝑡 𝑗 ≤ 2𝑟

]
(Core)

+
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)𝑡 𝑗 · 1
[
𝑡 ∉ 𝑅 𝑗

]
· 1

[
𝑡 𝑗 > 2𝑟

]
. (Tail)

We now restate the lemmas that upper bounds each component.

Lemma C.1. Single ≤ 2BRev(𝑉 ) + SRev(𝑉 ).
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Proof. We first recall the expression of Single.

Single =
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)𝜑 (𝑡 𝑗 |𝑡−𝑗 ) · 1
[
𝑡 ∈ 𝑅 𝑗

]
.

Because 𝜋 𝑗 (𝑡) ·1
[
𝑡 ∈ 𝑅 𝑗

]
is between 0 and 1, we can upper bound Single by setting it to 1whenever

the ironed virtual value is positive, and 0 otherwise.

Single ≤
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜑 (𝑡 𝑗 |𝑡−𝑗 ) · 1
[
𝜑 (𝑡 𝑗 |𝑡−𝑗 ) ≥ 0

]
=

∑︁
𝑗 ∈[𝑚]

∑︁
𝑡 ∈𝑇

𝑓 (𝑡−𝑗 ) 𝑓 (𝑡 𝑗 |𝑡−𝑗 )𝜑 (𝑡 𝑗 |𝑡−𝑗 ) · 1
[
𝜑 (𝑡 𝑗 |𝑡−𝑗 ) ≥ 0

]
=

∑︁
𝑗 ∈[𝑚]

∑︁
𝑡−𝑗 ∈𝑇−𝑗

𝑓 (𝑡−𝑗 ) · Rev(𝑡 𝑗 |𝑡−𝑗 ).

Intuitively, we need to show that knowing 𝑡−𝑗 does not help us sell item 𝑗 by too much. Observe

that 𝑉 is a correlated distribution obtained from capping an independent distribution. The proof of

the lemma crucially relies on the following property of 𝑉 : revealing 𝑡−𝑗 gives the same amount of

information as revealing only the sum of 𝑡−𝑗 . For a fixed 𝑗 , the revenue Rev(𝑡 𝑗 |𝑡−𝑗 ) can be captured

by the (non-disjoint) union of the following two cases:

(1) ∥𝑡−𝑗 ∥
1
< 𝑐/2 and 𝑡 𝑗 < 𝑐/2 both hold. Conditioned on this event, the valuation of 𝑡 𝑗 is

independent of 𝑡−𝑗 . Hence, knowing 𝑡−𝑗 does not provide additional information.

(2) ∥𝑡 ∥
1
≥ 𝑐/2. In this case, buyer’s value for the grand bundle is at least 𝑐/2, so we could charge

this to BRev(𝑉 ).
It is worth noting that 𝑡 𝑗 and 𝑡−𝑗 are not independent when ∥𝑡 ∥

1
< 𝑐/2, so we have to condition on

stricter events for them to become independent. Formally, if ∥𝑡−𝑗 ∥
1
< 𝑐/2,

𝑓 (𝑡 𝑗 |𝑡−𝑗 , 𝑡 𝑗 < 𝑐/2) = 𝑓 (𝑡 𝑗 |𝑡 𝑗 < 𝑐/2), ∀𝑗 ∈ [𝑚], 𝑡 ∈ 𝑇 .

We are now ready to bound Single. For single-parameter distributions, the optimal auction

simply sets a reserve price. Let 𝑝∗𝑗 be the optimal reserve price for the distribution 𝑓 (𝑡 𝑗 |𝑡 𝑗 < 𝑐/2),
and let 𝑝 𝑗 (𝑡−𝑗 ) be the optimal reserve price for the distribution 𝑓 (𝑡 𝑗 |𝑡−𝑗 ).

Single ≤
∑︁
𝑗 ∈[𝑚]

∑︁
𝑡−𝑗 ∈𝑇−𝑗

𝑓 (𝑡−𝑗 ) · Rev(𝑡 𝑗 |𝑡−𝑗 )

=
∑︁
𝑗 ∈[𝑚]

∑︁
𝑡 ∈𝑇

𝑓 (𝑡−𝑗 ) 𝑓 (𝑡 𝑗 |𝑡−𝑗 )𝑝 𝑗 (𝑡−𝑗 ) · 1
[
𝑡 𝑗 ≥ 𝑝 𝑗 (𝑡−𝑗 )

]
≤
∑︁
𝑗

∑︁
∥𝑡 ∥

1
≥ 𝑐

2

𝑓 (𝑡)𝑡 𝑗 +
∑︁
𝑗

∑︁
𝑡 𝑗<

𝑐
2
, ∥𝑡−𝑗 ∥

1
< 𝑐

2

𝑓 (𝑡)𝑝 𝑗 (𝑡−𝑗 ) · 1
[
𝑡 𝑗 ≥ 𝑝 𝑗 (𝑡−𝑗 )

]
≤

∑︁
∥𝑡 ∥

1
≥ 𝑐

2

𝑓 (𝑡)
∑︁
𝑗

𝑡 𝑗 +
∑︁
𝑗

∑︁
𝑡 𝑗<

𝑐
2
, ∥𝑡−𝑗 ∥

1
< 𝑐

2

𝑓 (𝑡)𝑝∗𝑗 · 1
[
𝑡 𝑗 ≥ 𝑝∗𝑗

]
≤ 𝑐 · Pr

𝑡∼𝑉

[
∥𝑡 ∥

1
≥ 𝑐

2

]
+
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝑝∗𝑗 · 1
[
𝑡 𝑗 ≥ 𝑝∗𝑗

]
≤ 2BRev(𝑉 ) + SRev(𝑉 ).

The last step uses the facts that (1) we can price the grand bundle at price 𝑐/2 and therefore

BRev(𝑉 ) ≥ (𝑐/2) · Pr [∥𝑡 ∥
1
≥ 𝑐/2]; and (2) the second term is exactly the revenue we can obtain if

we post each item 𝑗 separately at price 𝑝∗𝑗 . □
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Recall that 𝑟 = SRev(𝑉 ). We continue to upper bound Tail and Core.

Lemma C.2. Tail ≤ SRev(𝑉 ).

Proof. Recall that 𝑅 𝑗 ⊆ 𝑇 is the subset of buyer types whose favorite item is 𝑗 .

Tail =
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)𝑡 𝑗 · 1
[
𝑡 ∉ 𝑅 𝑗

]
· 1

[
𝑡 𝑗 > 2𝑟

]
≤
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝑡 𝑗 · 1
[
𝑡 ∉ 𝑅 𝑗

]
· 1

[
𝑡 𝑗 > 2𝑟

]
=

∑︁
𝑗 ∈[𝑚]

∑︁
𝑡 𝑗>2𝑟

𝑓 (𝑡 𝑗 )
∑︁

𝑡−𝑗 ∈𝑇−𝑗
𝑓 (𝑡−𝑗 |𝑡 𝑗 )𝑡 𝑗 · 1

[
𝑡 ∉ 𝑅 𝑗

]
.

We first show that for any fixed 𝑡∗𝑗 > 2𝑟 , knowing the value for item 𝑗 to be 𝑡∗𝑗 will not increase the
probability of 𝑡 ∉ 𝑅 𝑗 by more than a factor of 2. Intuitively, it is because 𝑡 𝑗 > 2𝑟 is large enough.

This is another place where we use the special property of the 𝑉 we designed.

Recall that𝑉𝑗 is the marginal distribution of𝑉 on the 𝑗-th coordinate, and 𝑓 (𝑡 𝑗 ) is the probability
mass function of 𝑉𝑗 . The definition 𝑟 = SRev(𝑉 ) implies that Pr

𝑡 𝑗∼𝑉𝑗

[
𝑡 𝑗 < 2𝑟

]
≥ 1/2, otherwise

selling only item 𝑗 at price 2𝑟 gives revenue more than 𝑟 .∑︁
𝑡−𝑗 ∈𝑇−𝑗

𝑓 (𝑡−𝑗 |𝑡∗𝑗 ) · 1
[
(𝑡∗𝑗 , 𝑡−𝑗 ) ∉ 𝑅 𝑗

]
≤ 2 Pr

𝑡 𝑗∼𝑉𝑗

[
𝑡 𝑗 < 2𝑟

]
·

∑︁
𝑡−𝑗 ∈𝑇−𝑗

𝑓 (𝑡−𝑗 |𝑡∗𝑗 ) · 1
[
(𝑡∗𝑗 , 𝑡−𝑗 ) ∉ 𝑅 𝑗

]
= 2

∑︁
𝑡 𝑗<2𝑟

𝑓 (𝑡 𝑗 )
∑︁

𝑡−𝑗 ∈𝑇−𝑗
𝑓 (𝑡−𝑗 |𝑡∗𝑗 ) · 1

[
(𝑡∗𝑗 , 𝑡−𝑗 ) ∉ 𝑅 𝑗

]
≤ 2

∑︁
𝑡 𝑗<2𝑟

𝑓 (𝑡 𝑗 )
∑︁

𝑡−𝑗 ∈𝑇−𝑗
𝑓 (𝑡−𝑗 |𝑡 𝑗 ) · 1

[
(𝑡 𝑗 , 𝑡−𝑗 ) ∉ 𝑅 𝑗

]
≤ 2

∑︁
𝑡−𝑗 ∈𝑇−𝑗

𝑓 (𝑡−𝑗 ) · 1
[
𝑡 ∉ 𝑅 𝑗

]
.

The last step uses the fact that 𝑓 (𝑡−𝑗 ) =
∑

𝑡 𝑗
𝑓 (𝑡 𝑗 ) 𝑓 (𝑡−𝑗 |𝑡 𝑗 ). The second last step states the event

𝑡 ∉ 𝑅 𝑗 (that 𝑗 is not the largest coordinate) is more likely to happen when the value of 𝑡 𝑗 is smaller.

It uses the monotonicity of 𝑓 (𝑡−𝑗 | · ) and 𝑡 𝑗 < 2𝑟 < 𝑡∗𝑗 . This fact is captured in Lemma D.1 and will

be proved in Appendix D.

Lemma D.1. Let 𝑉 = 𝑉| ( ∥𝑣 ∥
1
≤𝑐1) and 𝑉 = 𝑉| ( ∥𝑣 ∥

1
≤𝑐2) for any 𝑐1 ≤ 𝑐2. We have 𝑉 ⪯ 𝑉 .

Finally, we relate our upper bound on Tail to 𝑟 .

Tail ≤
∑︁
𝑗 ∈[𝑚]

∑︁
𝑡 𝑗>2𝑟

𝑓 (𝑡 𝑗 )
∑︁

𝑡−𝑗 ∈𝑇−𝑗
𝑓 (𝑡−𝑗 |𝑡 𝑗 )𝑡 𝑗 · 1

[
𝑡 ∉ 𝑅 𝑗

]
≤ 2

∑︁
𝑗 ∈[𝑚]

∑︁
𝑡 𝑗>2𝑟

𝑓 (𝑡 𝑗 )
∑︁

𝑡−𝑗 ∈𝑇−𝑗
𝑓 (𝑡−𝑗 )𝑡 𝑗 · 1

[
𝑡 ∉ 𝑅 𝑗

]
≤ 2

∑︁
𝑗 ∈[𝑚]

∑︁
𝑡 𝑗>2𝑟

𝑓 (𝑡 𝑗 ) · 𝑟 ≤ SRev(𝑉 ).

The second last step is because for any 𝑗 , selling each item separately at the same price 𝑡∗𝑗 gives

revenue at least

∑
𝑡−𝑗 𝑓 (𝑡−𝑗 )𝑡∗𝑗 · 1

[
𝑡 ∉ 𝑅 𝑗

]
: If some item 𝑘 ≠ 𝑗 satisfies that 𝑡𝑘 ≥ 𝑡∗𝑗 , then the buyer
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would purchase at least one of such items. The last step holds because

∑
𝑗 ∈[𝑚]

∑
𝑡 𝑗 ≥2𝑟 𝑓 (𝑡 𝑗 ) · 2𝑟 is

exactly the revenue of selling each item at 2𝑟 , so it is at most SRev(𝑉 ). □

Lemma C.3. Core ≤ 2BRev(𝑉 ) + 3SRev(𝑉 ).

Proof. Recall 𝑟 = SRev(𝑉 ). If we sell the grand bundle at price Core − 3𝑟 , we show that the

buyer will purchase it with probability at least 5/9. This implies that BRev(𝑉 ) ≥ 5

9
(Core − 3𝑟 ), or

equivalently Core ≤ 9

5
BRev(𝑉 ) + 3𝑟 ≤ 2BRev(𝑉 ) + 3SRev(𝑉 ).

For the simplicity of presentation, we define a new random variable 𝑠 ∈ R𝑚 as follows: we first

draw a sample �̂� from 𝑉 , and set 𝑠 𝑗 = min(�̂� 𝑗 , 2𝑟 ) for all 𝑗 ∈ [𝑚].

Core =
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝜋 𝑗 (𝑡)𝑡 𝑗 · 1
[
𝑡 ∉ 𝑅 𝑗

]
· 1

[
𝑡 𝑗 ≤ 2𝑟

]
≤
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

𝑡 𝑗 · 1
[
𝑡 𝑗 ≤ 2𝑟

]
≤
∑︁
𝑡 ∈𝑇

𝑓 (𝑡)
∑︁
𝑗 ∈[𝑚]

(
𝑡 𝑗 · 1

[
𝑡 𝑗 ≤ 2𝑟

]
+ 2𝑟 · 1

[
𝑡 𝑗 > 2𝑟

] )
= E [∥𝑠 ∥

1
] .

Since we price the grand bundle at Core − 3𝑟 ≤ E [∥𝑠 ∥
1
] − 3𝑟 , and the buyer’s value for the grand

bundle is ∥𝑡 ∥
1
, it is sufficient to prove

Pr

𝑡∼𝑉
[∥𝑡 ∥

1
≥ E [∥𝑠 ∥

1
] − 3𝑟 ] ≥ 5

9

.

Moreover, because 𝑉 stochastically dominates 𝑠 , it is sufficient to prove

Pr[∥𝑠 ∥
1
≥ E [∥𝑠 ∥

1
] − 3𝑟 ] ≥ 5

9

.

Intuitively, the condition says that the ℓ1-norm of the random variable 𝑠 concentrates around its

expectation. This is the crucial reason why we design our 𝑉 to be negatively correlated.

In the next claim (Lemma C.5), we are going to prove Var[∥𝑠 ∥
1
] ≤ 4𝑟 2. Assume this is true, we

conclude the proof by applying the Chebyshev inequality,

Pr[∥𝑠 ∥
1
< E [∥𝑠 ∥

1
] − 3𝑟 ] ≤ Var ∥𝑠 ∥

1

9𝑟 2
≤ 4

9

. □

Lemma C.5. Let 𝑐 ∈ R𝑚 be the random variable with 𝑠 𝑗 = min(�̂� 𝑗 , 2𝑟 ) for all 𝑗 and �̂� ∼ 𝑉 . We have
Var[∥𝑠 ∥

1
] ≤ 4𝑟 2.

Proof. We first show that for any 𝑖 ≠ 𝑗 , 𝑠𝑖 and 𝑠 𝑗 are negatively correlated, i.e.,

Cov(𝑠𝑖 , 𝑠 𝑗 ) = E[𝑠𝑖𝑠 𝑗 ] − E [𝑠𝑖 ] · E[𝑠 𝑗 ] ≤ 0.
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Observe that𝑉𝑗 |�̂�𝑖=𝑥 stochastically dominates𝑉𝑗 |�̂�𝑖=𝑦 for any two possible values 𝑥 < 𝑦 of �̂�𝑖 . This

is because, for any 𝑎 ∈ R,

Pr

�̂�∼𝑉

[
�̂� 𝑗 ≤ 𝑎 | �̂�𝑖 = 𝑥

]
= Pr

𝑣∼𝑉

[
𝑣 𝑗 ≤ 𝑎 | 𝑣𝑖 = 𝑥, ∥𝑣 ∥

1
≤ 𝑐

]
= Pr

𝑣𝑗∼𝑉𝑗

𝑣 𝑗 ≤ 𝑎

������ 𝑣 𝑗 ≤ 𝑐 − 𝑥 −
∑︁
𝑘≠𝑖, 𝑗

𝑣𝑘


≤ Pr

𝑣𝑗∼𝑉𝑗

𝑣 𝑗 ≤ 𝑎

������ 𝑣 𝑗 ≤ 𝑐 − 𝑦 −
∑︁
𝑘≠𝑖, 𝑗

𝑣𝑘

 = Pr

�̂�∼𝑉

[
�̂� 𝑗 ≤ 𝑎 | �̂�𝑖 = 𝑦

]
.

Because 𝑠 𝑗 = min(�̂� 𝑗 , 2𝑟 ), we know that 𝑠 𝑗 |𝑣𝑖=𝑥 ⪰ 𝑠 𝑗 |𝑣𝑖=𝑦 as well. It follows that E[𝑠 𝑗 |𝑣𝑖 = 𝑥] ≥
E[𝑠 𝑗 |𝑣𝑖 = 𝑦]. In addition, since E[𝑠 𝑗 |𝑠𝑖 = 𝑥] = E[𝑠 𝑗 |𝑣𝑖 = 𝑥] when 𝑥 < 2𝑟 , and E[𝑠 𝑗 |𝑠𝑖 = 2𝑟 ] =

E[𝑠 𝑗 |𝑣𝑖 ≥ 2𝑟 ], we can deduce that E[𝑠 𝑗 |𝑠𝑖 ] weakly decreases as 𝑠𝑖 increases. Therefore, we get

E[𝑠𝑖𝑠 𝑗 ] =
∑︁
𝑠𝑖

Pr[𝑠𝑖 ]
(
𝑠𝑖 · E[𝑠 𝑗 |𝑠𝑖 ]

)
≤
∑︁
𝑠𝑖

Pr[𝑠𝑖 ]
(
𝑠𝑖 · E[𝑠 𝑗 ]

)
= E [𝑠𝑖 ] · E[𝑠 𝑗 ],

by an application of (a generalization of) the rearrangement inequality.

Given the negative correlations between the 𝑠𝑖 ’s, we can upper bound the variance of their sum.

Var

©«
∑︁
𝑖∈[𝑚]

𝑠𝑖
ª®¬ =

∑︁
𝑖∈[𝑚]

Var(𝑠𝑖 ) + 2

∑︁
1≤𝑖< 𝑗≤𝑚

Cov(𝑠𝑖 , 𝑠 𝑗 ) ≤
∑︁
𝑖∈[𝑚]

Var(𝑠𝑖 ).

It remains to show

∑
𝑖 Var(𝑠𝑖 ) ≤ 4𝑟 2. This part is identical to the analysis in earlier works [Babaioff

et al. 2014; Cai et al. 2016; Li and Yao 2013], but we include it for completeness. Let 𝑟 𝑗 ∈ R denote

the maximum revenue one can extract by selling item 𝑗 alone. Note that SRev(𝑉 ) = 𝑟 =
∑

𝑗 𝑟 𝑗 , so it

is sufficient to show Var(𝑠 𝑗 ) ≤ 4𝑟𝑟 𝑗 for all 𝑗 .

Fix some 𝑗 ∈ [𝑚]. We use 𝑥 = 𝑠 𝑗 as an alias for the random variable 𝑠 𝑗 . We know that

(1) 𝑥 is at most 2𝑟 , and

(2) the revenue of 𝑥 is at most 𝑟 𝑗 : (𝑎 · Pr [𝑥 ≥ 𝑎]) ≤ 𝑟 𝑗 for any 𝑎 ∈ R.
Combining these two facts gives the required bound on the variance of 𝑥 . Let 0 < 𝑎1 < . . . < 𝑎ℓ ≤ 2𝑟

be the support of 𝑥 , and let 𝑎0 = 0.

E[𝑥2] =
ℓ∑︁

𝑘=1

Pr[𝑥 = 𝑎𝑘 ] · 𝑎2𝑘

=

ℓ∑︁
𝑘=1

(𝑎2
𝑘
− 𝑎2

𝑘−1) · Pr[𝑥 ≥ 𝑎𝑘 ]

<

ℓ∑︁
𝑘=1

2(𝑎𝑘 − 𝑎𝑘−1)
(
𝑎𝑘 · Pr[𝑥 ≥ 𝑎𝑘 ]

)
≤ 𝑟 𝑗

ℓ∑︁
𝑘=1

2(𝑎𝑘 − 𝑎𝑘−1)

= 2𝑟 𝑗𝑎ℓ ≤ 4𝑟𝑟 𝑗 . □
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D PROOF OF LEMMA D.2 AND D.1
In this section we prove Lemma D.2 and D.1.

Lemma D.1. 𝑉| ( ∥𝑣 ∥
1
≤𝑐1) ⪯ 𝑉| ( ∥𝑣 ∥

1
≤𝑐2) for any 𝑐1 ≤ 𝑐2.

Proof. We are going to modify any �̃� dimension by dimension to reach �̂� . Define 𝑛 random

functions 𝜎1, 𝜎2, . . . , 𝜎𝑛 , where 𝜎𝑖 (𝑢) and 𝑢 only differs in 𝑢𝑖 . In other words, 𝜎𝑖 only modifies the

𝑖-th dimension of its input. Also define 𝜏𝑖 = 𝜎𝑖 ◦ 𝜎𝑖−1 ◦ · · · ◦ 𝜎1. Note that 𝜏𝑛 (𝑣) ≤ 𝑣 as long as

𝜎𝑖 (𝜏𝑖−1 (𝑣)) ≤ 𝜏𝑖−1 (𝑣) for all 𝑖 .
In the first step, select a 𝜎1 such that

Pr

𝑣∼𝑉
[(𝜎1 (𝑣))1] = Pr

𝑣∼𝑉

[
𝑣1

����� 𝑛∑︁
𝑖=1

𝑣𝑖 ≤ 𝑐1

]
.

Then we separately deal with 𝑣2’s according to their (𝜏1 (𝑣))1 value. Select a 𝜎2 such that

Pr

𝑣∼𝑉
[(𝜎2 (𝑣))2 | (𝜏1 (𝑣))1] = Pr

𝑣∼𝑉

[
𝑣2

�����(𝜏1 (𝑣))1, (𝜏1 (𝑣))1 + 𝑛∑︁
𝑖=2

𝑣𝑖 ≤ 𝑐1

]
.

We continue this procedure till we get 𝜎𝑛 . The 𝑘-th step will be setting

Pr

𝑣∼𝑉
[(𝜎𝑘 (𝑣))𝑘 | (𝜏1 (𝑣))1, . . . , (𝜏𝑘−1 (𝑣))𝑘−1]

= Pr

𝑣∼𝑉

[
𝑣𝑘

�����(𝜏1 (𝑣))1, . . . , (𝜏𝑘−1 (𝑣))𝑘−1, 𝑘−1∑︁
𝑖=1

(𝜏𝑖 (𝑣))𝑖 +
𝑛∑︁
𝑖=𝑘

𝑣𝑖 ≤ 𝑐1

]
.

Next we show for all 𝑘 , there exists 𝜎𝑘 satisfying (𝜎𝑘 (𝑥))𝑘 ≤ 𝑥𝑘 for all 𝑥 . This is simply first-

order stochastic dominance for one-dimensional distributions, and it is equivalent to the following

condition:

Pr

𝑣∼𝑉
[𝑣𝑘 ≤ 𝑎 | (𝜏1 (𝑣))1, . . . , (𝜏𝑘−1 (𝑣))𝑘−1]

≤ Pr

𝑣∼𝑉

[
𝑣𝑘 ≤ 𝑎

�����(𝜏1 (𝑣))1, . . . , (𝜏𝑘−1 (𝑣))𝑘−1, 𝑘−1∑︁
𝑖=1

(𝜏𝑖 (𝑣))𝑖 +
𝑛∑︁
𝑖=𝑘

𝑣𝑖 ≤ 𝑐1

]
, ∀𝑎 ∈ R.

Writing 𝑝𝑘 = (𝑣𝑘+1, . . . , 𝑣𝑛), 𝑞𝑘 = ((𝜏1 (𝑣))1, . . . , (𝜏𝑘−1 (𝑣))𝑘−1), and 𝑟𝑘 = (𝑣1, . . . , 𝑣𝑘−1), the inequal-
ity above is true because

Pr

𝑣∼𝑉

[
𝑣𝑘 ≤ 𝑎 | 𝑞𝑘 , 𝑣𝑘 + ∥𝑝𝑘 ∥1 + ∥𝑞𝑘 ∥1 ≤ 𝑐1

]
=
∑︁
𝑝𝑘 ,𝑟𝑘

Pr

𝑣∼𝑉
[𝑝𝑘 , 𝑟𝑘 ] · Pr

𝑣∼𝑉
[𝑣𝑘 ≤ 𝑎 | 𝑞𝑘 , 𝑝𝑘 , 𝑟𝑘 , 𝑣𝑘 ≤ min(𝑐1 − ∥𝑝𝑘 ∥1 − ∥𝑞𝑘 ∥1, 𝑐2 − ∥𝑝𝑘 ∥1 − ∥𝑟𝑘 ∥1)]

≥
∑︁
𝑝𝑘 ,𝑟𝑘

Pr

𝑣∼𝑉
[𝑝𝑘 , 𝑟𝑘 ] · Pr

𝑣∼𝑉
[𝑣𝑘 ≤ 𝑎 | 𝑞𝑘 , 𝑝𝑘 , 𝑟𝑘 , 𝑣𝑘 ≤ min(𝑐2 − ∥𝑝𝑘 ∥1 − ∥𝑞𝑘 ∥1, 𝑐2 − ∥𝑝𝑘 ∥1 − ∥𝑟𝑘 ∥1)]

= Pr

𝑣∼𝑉
[𝑣𝑘 ≤ 𝑎 | 𝑞𝑘 ] .

Therefore 𝜏𝑛 is the random function that defines coordinate-wise stochastic dominance, as every

𝜎𝑖 satisfies 𝜎𝑖 (𝑥) ≤ 𝑥 for all 𝑥 . □

Lemma D.2. 𝑉| ( ∥𝑣 ∥
1
≤𝑐) ⪯ 𝑉 for any 𝑐 > 0.

Proof. It is implied by Lemma D.1 when 𝑐1 = 𝑐 and 𝑐2 = max𝑣∈supp(𝑉 ) ∥𝑣 ∥1. □
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