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Abstract

We present an efficient algorithm for computing O(1)-approximate pure Nash equilibria in weighted
congestion games with polynomial latency functions of constant maximum degree. For games with linear
latency functions, the approximation guarantee is 3+

√
5

2 + O(γ) for arbitrarily small γ > 0; for latency
functions of maximum degree d, it is d2d+o(d). The running time is polynomial in the number of bits
in the representation of the game and 1/γ. The algorithm extends our recent algorithm for unweighted
congestion games [7] and is actually applied to a new class of games that we call Ψ-games. These are
potential games that “approximate” weighted congestion games with polynomial latency functions, e.g.,
the existence of pure Nash equilibria in Ψ-games implies the existence of d!-approximate equilibria in
weighted congestion games with polynomial latency functions of degree d. The analysis exploits the
nice properties of the potential functions of Ψ-games.
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1 Introduction

Among other solution concepts, the notion of the pure Nash equilibrium plays a central role in Game Theory.
Pure Nash equilibria in a game characterize situations with non-cooperative deterministic players in which
no player has any incentive to unilaterally deviate from the current situation in order to achieve a higher pay-
off. Unfortunately, it is well known that there are games that do not have pure Nash equilibria. Furhermore,
even in games where the existence of equilibria is guaranteed, their computation can be a computationally
hard task. Such negative results significantly question the importance of pure Nash equilibria as solution
concepts that characterize the behavior of rational players.

Approximate pure Nash equilibria, which characterize situations where no player can significantly im-
prove her payoff by unilaterally deviating from her current strategy, could serve as alternative solution
concepts1 provided that they exist and can be computed efficiently. In this paper, we study the complex-
ity of computation of approximate pure Nash equilibria in weighted congestion games and prove the first
positive algorithmic results for such games. Our main result is a polynomial-time algorithm that computes
O(1)-approximate pure Nash equilibria under mild restrictions on the game parameters.

Problem statement and related work. In a weighted congestion game, players compete over a set of
resources. Each player has a positive weight. Each resource incurs a latency to all players that use it; this
latency depends on the total weight of the players that use the resource according to a resource-specific, non-
negative, and non-decreasing latency function. Among a given set of strategies (over sets of resources), each
player aims to select one selfishly, trying to minimize her individual total cost, i.e., the sum of the latencies
on the resources in her strategy. Typical examples include weighted congestion games in networks, where
the network links correspond to the resources and each player has alternative paths that connect two nodes
as strategies.

The case of unweighted congestion games (i.e., when all players have unit weight) has been widely
studied in literature. Rosenthal [26] proved that these games admit a potential function with the follow-
ing remarkable property: the difference in the potential value between two states (i.e., two snapshots of
strategies) that differ in the strategy of a single player equals to the difference of the cost experienced by this
player in these two states. This immediately implies the existence of a pure Nash equilibrium. Any sequence
of improvement moves by the players strictly decreases the value of the potential and a state corresponding
to a local minimum of the potential will eventually be reached; this corresponds to a pure Nash equilibrium.
For weighted congestion games, potential functions exist only in the case where the latency functions are
linear or exponential (see [17, 20, 25]). Actually, in games with polynomial latency functions (of constant
maximum degree higher than 1), pure Nash equilibria may not exist [20]. In general, the problem of deciding
whether a given weighted congestion game has a pure Nash equilibrium is NP-hard [15].

Potential functions provide only inefficient proofs of existence of pure Nash equilibria. Fabrikant et al.
[18] proved that the problem of computing a pure Nash equilibrium in a (unweighted) congestion game is
PLS-complete (informally, as hard as it could be given that there is an associated potential function; see
[21]). This negative result holds even in the case of linear latency functions [1]. One consequence of PLS-
completeness results is that almost all states in some congestion games are such that any sequence of players’
improvement moves that originates from these states and reaches pure Nash equilibria is exponentially long.
Such phenomena have been observed even in very simple weighted congestion games (see [2, 16]). Efficient
algorithms are known only for special cases. For example, Fabrikant et al. [18] show that the Rosenthal’s
potential function can be (globally) minimized efficiently by a flow computation in unweighted congestion
games in networks when the strategy sets of the players are symmetric.

The above negative results have led to the study of the complexity of approximate Nash equilibria. A
1Actually, approximate pure Nash equilibria may be more desirable as solution concepts in practical decision making settings

since they can accommodate small modeling inaccuracies due to uncertainty (e.g., see the arguments in [12]).
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ρ-approximate pure Nash equilibrium is a state, from which no player has an incentive to deviate so that
she decreases her cost by a factor larger than ρ. In our recent work [7], we present an algorithm for com-
puting O(1)-approximate pure Nash equilibria for unweighted congestion games with polynomial latency
functions of constant maximum degree. The restriction on the latency functions is necessary since, for more
general latency functions, Skopalik and Vöcking [27] show that the problem is still PLS-complete for any
polynomially computable ρ (see also the discussion in [7]). Improved bounds are known for special cases.
For symmetric unweighted congestion games, Chien and Sinclair [11] prove that the (1 + 󰂃)-improvement
dynamics converges to a (1 + 󰂃)-approximate Nash equilibrium after a polynomial number of steps; this
result holds under mild assumptions on the latency functions and the participation of the players in the
dynamics. Efficient algorithms for approximate equilibria have been recently obtained for other classes of
games such as constraint satisfaction [5, 24], anonymous games [14], network formation [3], and facility
location games [8].

In light of the negative results mentioned above, several authors have considered other properties of the
dynamics of congestion games. The papers [4, 19] consider the question of whether efficient states (in the
sense that the total cost of the players, or social cost, is small compared to the optimum one) can be reached
by best-response moves in weighted congestion games with polynomial latency functions. In particular,
Awerbuch et al. [4] show that using almost unrestricted sequences of (1 + 󰂃)-improvement best-response
moves, the players rapidly converge to efficient states. Unfortunately, these states are not approximate Nash
equilibria, in general. Similar approaches have been followed in the context of other games as well, such as
multicast [9, 10], cut [13], and valid-utility games [23].

Our contribution. To the best of our knowledge, no efficient algorithm for approximate pure Nash equilib-
ria is known for (any broad enough subclass of) weighted congestion games. We fill this gap by presenting
an algorithm for computing O(1)-approximate pure Nash equilibria in weighted congestion games with
polynomial latency functions of constant maximum degree. For games with linear latency functions, the ap-
proximation guarantee is 3+

√
5

2 +O(γ) for arbitrarily small γ > 0; for latency functions of maximum degree
d, it is d2d+o(d). The algorithm runs in time that is polynomial in the number of bits in the representation of
the game and 1/γ.

Our algorithm is applied to a new class of games that we call Ψ-games. Ψ-games are potential games
and, in a sense, approximate weighted congestion games with polynomial latency functions. Ψ-games of
degree 1 are linear weighted congestion games. Each weighted congestion game of degree d ≥ 2 has a cor-
responding Ψ-game of degree d such that any ρ-approximate equilibrium is a d!ρ-approximate equilibrium
for the former. As an intermediate new result, we obtain that weighted congestion games with polynomial
latency functions of degree d have d!-approximate pure Nash equilibria.

The algorithm has a simple general structure, similar to our recent algorithm for unweighted congestion
games [7], but has also important differences that are due to the dependency of the cost of each player on the
weights of other players. Given a Ψ-game of degree d and an arbitrary initial state, the algorithm computes
a sequence of best-response player moves of length that is bounded by a polynomial in the number of bits in
the representation of the game and 1/γ. The sequence consists of phases so that the players that participate
in each phase experience costs that are polynomially related. This is crucial in order to obtain convergence
in polynomial time. Within each phase, the algorithm coordinates the best-response moves according to two
different but simple criteria; this is the main tool that guarantees that the effect of a phase to previous ones is
negligible and, eventually, an approximate equilibrium is reached. The approximation guarantee is slightly
higher than a quantity that characterizes the potential functions of Ψ-games; this quantity (which we call
the stretch) is defined as the worst-case ratio of the potential value at an almost exact pure Nash equilibrium
over the globally optimum potential value and is almost 3+

√
5

2 for linear weighted congestion games and
dd+o(1) for Ψ-games of degree d ≥ 2. Our analysis follows the same main steps as in our recent paper [7]
but uses significantly more involved arguments due to the definition of Ψ-games.
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We remark that, following the classical definition of polynomial latency functions in the literature, we
assume that they have non-negative coefficients. This is a necessary limitation since the problem of com-
puting a ρ-approximate equilibrium in (unweighted) congestion games with linear latency functions with
negative offsets is PLS-complete [7].

Roadmap. We begin with preliminary general definitions in Section 2. Section 3 is devoted to Ψ-games
and their properties. We present our algorithm in Section 4 and its analysis in Section 5. We conclude with
open problems in Section 6.

2 Definitions and preliminaries

In general, a game can be defined as follows. It has a set of n players N ; each player u ∈ N has a set of
available strategies Σu. A snapshot of strategies, with one strategy per player, is called a state. Each state
S ∈

󰁔
u∈N Σu incurs a positive cost cu(S) to player u. Players act selfishly; each of them aims to select

a strategy that minimizes her cost, given the strategies of the other players. Given a state S and a strategy
s′u ∈ Σu for player u, we denote by (S−u, s

′
u) the state obtained from S when player u deviates to strategy

s′u. For a state S, an improvement move (or, simply, a move) for player u is the deviation to any strategy
s′u that (strictly) decreases her cost, i.e., cu(S−u, s

′
u) < cu(S). For ρ ≥ 1, such a move is called a ρ-move

if it satisfies cu(S−u, s
′
u) < cu(S)

ρ . A best-response move is a move that minimizes the cost of the player
(of course, given the strategies of the other players). So, from state S, a move of player u to strategy su
is a best-response move (and is denoted by BRu(S)) when cu(S−u, s

′
u) = mins∈Σu cu(S−u, s). A state S

is called a pure Nash equilibrium (or, simply, an equilibrium) when cu(S) ≤ cu(S−u, s
′
u) for every player

u ∈ N and every strategy s′u ∈ Σu, i.e., when no player has a move. In this case, we say that no player
has (any incentive to make) a move. Similarly, a state is called a ρ-approximate pure Nash equilibrium
(henceforth called, simply, a ρ-approximate equilibrium) when no player has a ρ-move. Also, a state is
called a ρ-approximate equilibrium for a subset of players A ⊆ N if no player in A has a ρ-move.

A weighted congestion game G can be represented by the tuple (N,E, (wu)u∈N , (Σu)u∈N , (fe)e∈E).
There is a set of n players N and a set of resources E. Each player u has a positive weight wu and a set of
available strategies Σu; each strategy su in Σu consists of a non-empty set of resources, i.e., su ⊆ 2E . Each
resource e ∈ E has a non-negative and non-decreasing latency function fe defined over non-negative reals,
which denotes the latency incurred to the players using resource e; this latency depends on the total weight
of players whose strategies include the particular resource. For a state S, let us define Ne(S) to be the multi-
set of the weights of the players that use resource e in S, i.e., Ne(S) = {wu : u ∈ N such that e ∈ su}.
Also, we use the notation L(A) to denote the sum of the elements of a finite multi-set of reals A. Then,
the latency incurred by resource e to a player u that uses it is fe(L(Ne(S))). The cost of a player u at
a state S is the total latency she experiences at the resources in her strategy su multiplied by her weight,
i.e., cu(S) = wu

󰁓
e∈su fe(L(Ne(S))). We consider weighted congestion games in which the resources

have polynomial latency functions with (integer) maximum degree d ≥ 1 with non-negative coefficients.
More precisely, the latency function of resource e is fe(x) =

󰁓d
k=0 ae,kx

k with ae,k ≥ 0. The special
case of linear weighted congestion games (i.e., with latency functions of degree 1) is of particular interest.
In general, the size of the representation of a weighted congestion game is the number of bits required to
represent the parameters ae,k of the latency functions, the weights of the players, and their strategy sets. In
weighted congestion games in networks, the network links are the resources. Each player u aims to connect
a pair of nodes (su, tu) and her strategies are all paths connecting su with tu in the network. Note that
the representation of such games does not need to keep the whole set of strategies explicitly; it just has
to represent the parameters ae,k, the weight and the source-destination node pair of each player, and the
network.

Unweighted congestion games (i.e., when wu = 1 for each player u ∈ N ) as well as linear weighted
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congestion games are potential games. They admit a potential function Φ :
󰁔

uΣu 󰀁→ R+, defined over all
states of the game, with the following property: for any two state S and (S−u, s

′
u) that differ only in the

strategy of player u, it holds that Φ(S−u, s
′
u)− Φ(S) = cu(S−u, s

′
u)− cu(S). Clearly, local minima of the

potential function corresponds to states that are pure Nash equilibria. Potential functions for the two classes
of games mentioned above have been presented by Rosenthal [26] and Fotakis et al. [17], respectively.
Unfortunately, weighted congestion games with polynomial latency functions of degree at least 2 are not
potential games and may not even have pure Nash equilibria [20].

We complete this section by presenting two technical inequalities; these are extensively used in our
proofs and are included here for easy reference.

Lemma 1 (Minkowski inequality)
󰁓s

t=1 (αt + βt)
k ≤

󰀓󰀃󰁓s
t=1 α

k
t

󰀄1/k
+

󰀃󰁓s
t=1 β

k
t

󰀄1/k󰀔k
, for any inte-

ger k ≥ 1 and αt,βt ≥ 0.

Claim 2 For every α ∈ (0, 1) and z > 1, it holds that zα − 1 ≥ α(z − 1)zα−1.

Proof. The function h(x) = xα is concave in [1,+∞). This means that, for every z > 1, the line
connecting points (1, 1) and (z, h(z)) has slope higher than the derivative of h at point z, i.e., zα−1

z−1 ≥
αzα−1. Equivalently, zα − 1 ≥ α(z − 1)zα−1. ⊓⊔

3 Ψ-games

Our aim in this section is to define a new class of games which we call Ψ-games and study their properties.
We will need the following interesting family of functions which have also been used in [6] in a slightly
different context.

Definition 3 For integer k ≥ 0, the function Ψk mapping finite multi-sets of reals to the reals is defined as
follows: Ψk(∅) = 0 for any integer k ≥ 1, Ψ0(A) = 1 for any (possibly empty) multi-set A, and for any
non-empty multi-set A = {α1,α2, ...,αℓ} and integer k ≥ 1,

Ψk(A) = k!
󰁛

1≤d1≤...≤dk≤ℓ

k󰁜

t=1

αdt .

So, Ψk(A) is essentially the sum of all monomials of total degree k on the elements of A. Each term in
the sum has coefficient k!. Clearly, Ψ1(A) = L(A). For k ≥ 2, compare Ψk(A) with L(A)k which can
also be expressed as the sum of the same terms, albeit with different coefficients in {1, ..., k!}, given by the
multinomial theorem.

We are ready to define Ψ-games. A Ψ-game G of (integer) degree d ≥ 1 can be represented by the tuple
(N , E, (wu)u∈N , (Σu)u∈N , (ae,k)e∈E,k=0,1,...,d). Similarly to weighted congestion games, there is a set of
n players N and a set of resources E. Each player u has a weight wu and a set of available strategies Σu;
each strategy su ∈ Σu consists of a non-empty set of resources, i.e., su ⊆ 2E . Each resource e is associated
with d + 1 non-negative numbers ae,k for k = 0, 1, ..., d. Again, for a state S, we define Ne(S) to be the
multi-set of weights of the players that use resource e at state S. Then, the cost of a player u at a state S is
defined as

ĉu(S) = wu

󰁛

e∈su

d󰁛

k=0

ae,kΨk(Ne(S)).

Of course, the general definitions in the beginning of Section 2 apply to Ψ-games. With some abuse in
notation, we also use 0 to refer to the pseudo-state in which no player selects any strategy and BRu(0) to
denote the best-response of player u assuming that no other player participates in the game.
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Clearly, given a weighted congestion game with polynomial latency functions of maximum degree d,
there is a corresponding Ψ-game with degree d, i.e., the one with the same sets of players, resources, and
strategy sets, and parameter ae,k for each resource e and integer k = 0, 1, ..., d equal to the corresponding
coefficient of the latency function fe. Observe that Ψ-games of degree 1 are linear weighted congestion
games. As we will see below, in a sense, a Ψ-game of degree d ≥ 2 is an approximation of its corresponding
weighted congestion game.

We remark here that a different approximation of weighted congestion games has been recently con-
sidered by Kollias and Roughgarden [22]. Given a weighted congestion game, they define a new game by
answering the following question: how should the product of the total weight of the players that use the
resource times its latency be shared as cost among these players so that the resulting game is a potential
game? Their games use a different sharing than the weight-proportional one used by weighted congestion
games. In contrast, our approach is to define an artificial latency on each resource e (by replacing the term
ae,kL(Ne(S))

k with ae,kΨk(Ne(S)) in the latency functions) so that weight-proportional sharing yields a
potential game. This guarantees the relation between approximate equilibria in weighted congestion games
and Ψ-games presented in Lemma 7 below, which is crucial for our purposes.

3.1 Properties of Ψ-games

The following lemma is proved in (the full version of) [6] and is extensively used in our proofs.

Lemma 4 For any integer k ≥ 1, any finite multi-set of non-negative reals A, and any non-negative real b
the following hold:

a. L(A)k ≤ Ψk(A) ≤ k!L(A)k d. Ψk(A ∪ {b})−Ψk(A) = kbΨk−1(A ∪ {b})
b. Ψk−1(A)

k ≤ Ψk(A)
k−1 e. Ψk(A) ≤ kΨ1(A)Ψk−1(A)

c. Ψk(A ∪ {b}) =
󰁓k

t=0
k!

(k−t)!b
tΨk−t(A) f. Ψk(A ∪ {b}) ≤

󰀃
Ψk({b})1/k +Ψk(A)

1/k
󰀄k

We now present a very important property of Ψ-games.

Theorem 5 The function Φ(S) =
󰁓

e

󰁓d
k=0

ae,k
k+1Ψk+1(Ne(S)) is a potential function for Ψ-games of de-

gree d.

Proof. Consider a player u, a state S in which u plays strategy su and state (S−u, s
′
u) where u has deviated

to strategy s′u. Using the definition of the potential function, we have

Φ(S)− Φ(S−u, s
′
u) =

󰁛

e

d󰁛

k=0

ae,k
k + 1

Ψk+1(Ne(S))−
󰁛

e

d󰁛

k=0

ae,k
k + 1

Ψk+1(Ne(S−u, s
′
u))

=
󰁛

e∈su\s′u

d󰁛

k=0

ae,k
k + 1

󰀃
Ψk+1(Ne(S))−Ψk+1(Ne(S−u, s

′
u))

󰀄

+
󰁛

e∈s′u\su

d󰁛

k=0

ae,k
k + 1

󰀃
Ψk+1(Ne(S))−Ψk+1(Ne(S−u, s

′
u))

󰀄

=
󰁛

e∈su\s′u

d󰁛

k=0

ae,kwuΨk(Ne(S))−
󰁛

e∈s′u\su

d󰁛

k=0

ae,kwuΨk(Ne(S−u, s
′
u))

= wu

󰁛

e∈su

d󰁛

k=0

ae,kΨk(Ne(S))− wu

󰁛

e∈s′u

d󰁛

k=0

ae,kΨk(Ne(S−u, s
′
u))

= ĉu(S)− ĉu(S−u, s
′
u).
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The third equality follows by Lemma 4d and the facts that Ne(S) = Ne(S−u, s
′
u)∪{wu} for every resource

e ∈ su \ s′u and Ne(S−u, s
′
u) = Ne(S) ∪ {wu} for every resource e ∈ s′u \ su. The last equality follows by

the definition of ĉu. ⊓⊔

As a corollary, we conclude that the Nash dynamics of Ψ-games are acyclic; hence, these games admit
pure Nash equilibria. Recall that Ψ-games of degree 1 are linear weighted congestion games; for this specific
case, Theorem 5 has been proved in [17].

In the following, we study the relation between the approximation guarantee of a state for a Ψ-game and
its corresponding weighted congestion game with polynomial latency functions. The proof of the next claim
follows easily by Lemma 4a.

Claim 6 Consider a weighted congestion game with polynomial latency functions of degree d and its cor-
responding Ψ-game. Then, for each player u and state S, cu(S) ≤ ĉu(S) ≤ d!cu(S).

Proof. We will use Lemma 4a and the definitions of cu(S) and ĉu(S). Let su be the strategy of player u at
state S. Using the first inequality of Lemma 4a, we have

cu(S) = wu

󰁛

e∈su

d󰁛

k=0

ae,kL(Ne(S))
k ≤ wu

󰁛

e∈su

d󰁛

k=0

ae,kΨk(Ne(S)) = ĉu(S).

Also, using the second inequality in Lemma 4a, we have

ĉu(S) = wu

󰁛

e∈su

d󰁛

k=0

ae,kΨk(Ne(S)) ≤ wu

󰁛

e∈su

d󰁛

k=0

ae,kk!L(Ne(S))
k ≤ d!wu

󰁛

e∈su

d󰁛

k=0

ae,kL(Ne(S))
k

= d!cu(S).

⊓⊔

Using Claim 6, we can obtain a relation between approximate equilibria as well.

Lemma 7 Any ρ-approximate pure Nash equilibrium for a Ψ-game of degree d is a d!ρ-approximate pure
Nash equilibrium for the corresponding weighted congestion game with polynomial latencies.

Proof. Let S be ρ-approximate equilibrium for a Ψ-game of degree d, u a player and s′u a strategy of u
different than her strategy su in S. Using the ρ-approximate equilibrium condition for player u and Claim
6, we have

cu(S) ≤ ĉu(S) ≤ ρĉu(S−u, s
′
u) = d!ρ · cu(S−u, s

′
u).

⊓⊔

Since pure Nash equilibria always exist in Ψ-games, the last statement (applied with ρ = 1) implies the
following.

Theorem 8 Every weighted congestion game with polynomial latency functions of maximum degree d has
a d!-approximate pure Nash equilibrium.
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3.2 Subgames and partial potentials

We now define restrictions of the potential function of Ψ-games. Given a state S and a set of players A ⊆ N ,
we denote by NA

e (S) the multiset of the weights of players in A that use resource e in S. Then, we define

ΦA(S) =
󰁛

e

d󰁛

k=0

ae,k
k + 1

Ψk+1(N
A
e (S)).

We can think of ΦA as the potential of a subgame in which only the players of A participate.
We also use the notion of the partial potential to account for the contribution of subsets of players to the

potential function. Consider sets of players A and B with B ⊆ A ⊆ N . Then, the B-partial potential of the
subgame among the players in A is defined as

ΦA
B(S) = ΦA(S)− ΦA\B(S).

When A = N , we remove the superscript from partial potentials, i.e., ΦB(S) = ΦN
B (S). Also, when B

is a singleton containing player u, we simplify the notation of the partial potential to ΦA
u (S). Furthermore,

observe that ΦA
A(S) = ΦA(S).

The next four claims present basic properties of partial potentials.

Claim 9 Let S be a state of a Ψ-game and let B ⊆ A ⊆ N . Then, ΦA
B(S) ≤ ΦB(S).

Proof. Let k ≥ 1 be an integer and consider a resource e which is used by at least one player of B in
S. By the definition of Ψk, observe that Ψk(N

A
e (S)) − Ψk(N

A\B
e (S)) is equal to k! times the sum of all

monomials of degree k among the elements of NA
e (S) that contain at least one element in NB

e (S). Similarly,
Ψk(Ne(S))−Ψk(N

N\B
e (S)) is equal to k! times the sum of all monomials of degree k among the elements

of Ne(S) that contain at least one element in NB
e (S). Since NA

e (S) ⊆ Ne(S), we have that

Ψk(N
A
e (S))−Ψk(N

A\B
e (S)) ≤ Ψk(Ne(S))−Ψk(N

N\B
e (S)).

The inequality holds trivially (with equality) if no player from B uses resource e in S. Using this inequality
and the definition of the partial potential, we have

ΦA
B(S) = ΦA(S)− ΦA\B(S) =

󰁛

e

d󰁛

k=0

ae,k
k + 1

󰀓
Ψk+1(N

A
e (S))−Ψk+1(N

A\B
e (S))

󰀔

≤
󰁛

e

d󰁛

k=0

ae,k
k + 1

󰀓
Ψk+1(Ne(S))−Ψk+1(N

N\B
e (S))

󰀔
= Φ(S)− ΦN\B(S)

= ΦB(S).

⊓⊔

Claim 10 Let A ⊆ N be a set of players and let S and S′ be states such that each player in A uses the
same strategy in S and S′. Then, for every set of players B ⊆ A, ΦA

B(S) = ΦA
B(S

′).

Proof. Observe that NA′
e (S) = NA′

e (S′) for each resource e and any A′ ⊆ A. By the definition of the
potential of the subgame among the players of A′, we have ΦA′

(S) = ΦA′
(S′). Then, by the definition of

the partial potential, ΦA
B(S) = ΦA(S)− ΦA\B(S) = ΦA(S′)− ΦA\B(S′) = ΦA

B(S
′). ⊓⊔

Claim 11 Let S be a state of a Ψ-game and let u be a player. Then, Φu(S) = ĉu(S).
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Proof. Let su be the strategy of player u in S. We use the definition of the partial potential, the definitions
of the potential for the original game and the subgame among the players in N \ {u}, Lemma 4d, and the
definition of ĉu(S) to obtain

Φu(S) = Φ(S)− ΦN\{u}(S) =
󰁛

e

d󰁛

k=0

ae,k
k + 1

󰀓
Ψk+1(Ne(S))−Ψk+1(N

N\{u}
e (S))

󰀔

=
󰁛

e∈su

d󰁛

k=0

ae,k
k + 1

󰀓
Ψk+1(Ne(S))−Ψk+1(N

N\{u}
e (S))

󰀔
= wu

󰁛

e∈su

d󰁛

k=0

ae,kΨk(Ne(S))

= ĉu(S).

⊓⊔

Claim 12 Let u be a player and A ⊆ N a set of players that contains u. Then, for any two states S and S′

that differ only in the strategy of player u, it holds that ΦA(S)− ΦA(S
′) = ĉu(S)− ĉu(S

′).

Proof. We have

ΦA(S)− ΦA(S
′) = Φ(S)− ΦN\A(S)− Φ(S′) + ΦN\A(S′) = Φ(S)− Φ(S′) = ĉu(S)− ĉu(S

′).

The first equality follows by the definition of the A-partial potential, the second one follows by Claim 10
since each player in N \A uses the same strategy in S and S′ and the last one follows by Theorem 5. ⊓⊔

In particular, Claim 12 implies that the A-partial potential can be thought of as a potential function
defined over all states in which each player in N \A uses the same strategy.

We proceed with the following interesting property that shows that the potential function of Ψ-games is
cost-revealing. It also implies that the potential of a state lower-bounds the total cost of all players.

Lemma 13 For every state S of a Ψ-game and any set of players A ⊆ N , it holds that ΦA(S) ≤󰁓
u∈A ĉu(S).

Proof. Let A = {u1, u2, ..., u|A|}. Let A0 = ∅ and At = {u1, ..., ut} for t = 1, 2, ..., |A|. Then, using the
definition of the partial potential and Claims 9 and 11, we have

ΦA(S) = Φ(S)− ΦN\A(S) =

|A|󰁛

t=1

󰀓
ΦN\At−1(S)− ΦN\At(S)

󰀔

=

|A|󰁛

t=1

ΦN\At−1
ut

(S) ≤
|A|󰁛

t=1

Φut(S) =
󰁛

u∈A
ĉu(S).

⊓⊔

3.3 The stretch of the potential function

An important quantity for our purposes is the stretch of the potential function of Ψ-games; a general defini-
tion that applies to every potential game follows.

Definition 14 Consider a potential game with a positive potential function Φ and let S∗ be the state of min-
imum potential. The ρ-stretch of the potential function of the game is the maximum over all ρ-approximate
pure Nash equilibria S of the ratio Φ(S)/Φ(S∗).
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The next two statements provide bounds on the ρ-stretch of the potential function of Ψ-games of degree
1 (i.e., linear weighted congestion games) and d ≥ 2, respectively.

Lemma 15 For every ρ ∈ [1, 11/10], the ρ-stretch of the potential function of a linear weighted congestion
game is at most 3+

√
5

2 + 6(ρ− 1).

Proof. Let S∗ be the state of minimum potential and S be a ρ-approximate equilibrium. For each player u,
we denote by su and s∗u the strategies she plays at states S and S∗, respectively. Using the ρ-approximate
equilibrium condition cu(S) ≤ ρ · cu(S−u, s

∗
u), the definition of the cost of player u, and the definition of

function Ψ1, we obtain
󰁛

u

cu(S) ≤ ρwu

󰁛

e∈s∗u

(ae,1Ψ1(Ne(S−u, s
∗
u)) + ae,0)

≤ ρwu

󰁛

e∈s∗u

(ae,1Ψ1(Ne(S) ∪ {wu}) + ae,0)

= ρwu

󰁛

e∈s∗u

(ae,1Ψ1(Ne(S)) + ae,1wu + ae,0).

By summing over all players, by exchanging sums, and using the definition of Ne(S
∗), we obtain

󰁛

u

cu(S) ≤ ρ
󰁛

u

wu

󰁛

e∈s∗u

(ae,1Ψ1(Ne(S)) + ae,1wu + ae,0)

= ρ
󰁛

e

󰀳

󰁃ae,1Ψ1(Ne(S))
󰁛

u:e∈s∗u

wu + ae,1
󰁛

u:e∈s∗u

w2
u + ae,0

󰁛

u:e∈s∗u

wu

󰀴

󰁄

= ρ
󰁛

e

󰀳

󰁃ae,1Ψ1(Ne(S))Ψ1(Ne(S
∗)) + ae,1

󰁛

u:e∈s∗u

w2
u + ae,0Ψ1(Ne(S

∗))

󰀴

󰁄.

We now apply the inequality xy ≤
√
5−1

2(3−
√
5)
y2 +

√
5−2

3−
√
5
x2 that holds for any pair of non-negative x and y on

the rightmost part of the above derivation to obtain
󰁛

u

cu(S)

≤ ρ
󰁛

e

󰀳

󰁃
√
5− 1

2(3−
√
5)
ae,1Ψ1(Ne(S

∗))2 +

√
5− 2

3−
√
5
ae,1Ψ1(Ne(S))

2 + ae,1
󰁛

u:e∈s∗u

w2
u + ae,0Ψ1(Ne(S

∗))

󰀴

󰁄

= ρ
󰁛

e

󰀳

󰁃 5−
√
5

4(3−
√
5)
ae,1

󰀳

󰁃Ψ1(Ne(S
∗))2 +

󰁛

u:e∈s∗u

w2
u

󰀴

󰁄+ ae,0Ψ1(Ne(S
∗))

󰀴

󰁄

−ρ
󰁛

e

7− 3
√
5

4(3−
√
5)
ae,1

󰀳

󰁃Ψ1(Ne(S
∗))2 −

󰁛

u:e∈s∗u

w2
u

󰀴

󰁄+

√
5− 2

3−
√
5
q
󰁛

e

ae,1Ψ1(Ne(S))
2.

Now, observe that Ψ1(Ne(S
∗))2 ≥

󰁓
u:e∈s∗u w

2
u for every resource e. Furthermore, Ψ1(Ne(S

∗))2 +

10



󰁓
u:e∈s∗u w

2
u = Ψ2(Ne(S

∗)). Hence, we have

󰁛

u

cu(S) ≤ ρ
󰁛

e

󰀣
5−

√
5

4(3−
√
5)
ae,1Ψ2(Ne(S

∗)) + ae,0Ψ1(Ne(S
∗))

󰀤
+

√
5− 2

3−
√
5
ρ
󰁛

e

ae,1Ψ1(Ne(S))
2

≤ 5−
√
5

2(3−
√
5)
ρ
󰁛

e

󰀓ae,1
2

Ψ2(Ne(S
∗)) + ae,0Ψ1(Ne(S

∗))
󰀔
+

√
5− 2

3−
√
5
ρ
󰁛

e

ae,1Ψ1(Ne(S))
2

=
5−

√
5

2(3−
√
5)
ρΦ(S∗) +

√
5− 2

3−
√
5
ρ
󰁛

e

ae,1Ψ1(Ne(S))
2. (1)

We now use the definition of Φ(S), the fact that for every player u and resource e ∈ su, it holds that
wu ≤ Ψ1(Ne(S)), and the definition of the cost of player u. We have

Φ(S) =
󰁛

e

󰀓ae,1
2

Ψ2(Ne(S)) + ae,0Ψ1(Ne(S))
󰀔

=
󰁛

e

󰀣
ae,1
2

󰁛

u:e∈su

󰀃
wuΨ1(Ne(S)) + w2

u

󰀄
+ ae,0

󰁛

u:e∈su
wu

󰀤

≤
󰁛

e

󰀣
ae,1
2

󰁛

u:e∈su

󰀓
(6− 2

√
5)wuΨ1(Ne(S)) + (2

√
5− 4)w2

u

󰀔
+ ae,0

󰁛

u:e∈su
wu

󰀤

= (3−
√
5)

󰁛

u

wu

󰁛

e∈su
(ae,1Ψ1(Ne(S)) + ae,0) + (

√
5− 2)

󰁛

e

ae,1
󰁛

u:e∈su
w2
u

+(
√
5− 2)

󰁛

e

ae,0
󰁛

u:e∈su
wu

= (3−
√
5)

󰁛

u

cu(S) + (
√
5− 2)

󰁛

e

ae,1
󰁛

u:e∈su
w2
u + (

√
5− 2)

󰁛

e

ae,0
󰁛

u:e∈su
wu.

By applying inequality (1) to the rightmost part of this derivation, we obtain

Φ(S) ≤ 5−
√
5

2
ρΦ(S∗) + (

√
5− 2)ρ

󰁛

e

ae,1Ψ1(Ne(S))
2 + (

√
5− 2)

󰁛

e

ae,1
󰁛

u:e∈su
w2
u

+(
√
5− 2)

󰁛

e

ae,0Ψ1(Ne(S))

≤ 5−
√
5

2
ρΦ(S∗) + (2

√
5− 4)ρ

󰁛

e

󰀣
ae,1
2

󰀣
Ψ1(Ne(S))

2 +
󰁛

u:e∈su
w2
u

󰀤
+ ae,0Ψ1(Ne(S))

󰀤

=
5−

√
5

2
ρΦ(S∗) + (2

√
5− 4)ρ

󰁛

e

󰀓ae,1
2

Ψ2(Ne(S)) + ae,0Ψ1(Ne(S))
󰀔

=
5−

√
5

2
ρΦ(S∗) + (2

√
5− 4)ρΦ(S).

The last inequality implies that Φ(S) is not larger than (5−
√
5)ρ

2(1−(2
√
5−4)ρ)

Φ(S∗) which can be easily proved to

be at most
󰀓
3+

√
5

2 + 6(ρ− 1)
󰀔
Φ(S∗) when ρ ∈ [1, 11/10]. ⊓⊔

Lemma 16 The ρ-stretch of the potential function of a Ψ-game of degree d ≥ 2 is at most ρ(ρ + 1)d(d +
1)d+1.
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Proof. Consider a ρ-approximate equilibrium S of a Ψ-game and let S∗ be the state of minimum potential.
We denote by su and s∗u the strategy of player u at states S and S∗, respectively.

By Lemma 13, the ρ-approximate equilibrium condition ĉu(S) ≤ ρ · ĉu(S−u, s
∗
u), and the definition of

the potential function, we have

1

ρ
Φ(S) ≤ 1

ρ

󰁛

u

ĉu(S)

≤
󰁛

u

ĉu(S−u, s
∗
u)

=
󰁛

u

wu

󰁛

e∈s∗u

d󰁛

k=0

ae,kΨk(Ne(S−u, s
∗
u))

=
󰁛

e

d󰁛

k=0

ae,k
󰁛

u:e∈s∗u

wuΨk(Ne(S−u, s
∗
u)).

We now use the fact that Ne(S−u, s
∗
u) ⊆ Ne(S) ∪ {wu}, Lemma 4c, and the fact that Ψt+1(Ne(S

∗)) ≥
(t+ 1)!

󰁓
u:e∈s∗u w

t+1
u to obtain

1

ρ
Φ(S) ≤

󰁛

e

d󰁛

k=0

ae,k
󰁛

u:e∈s∗u

wuΨk(Ne(S) ∪ {wu})

=
󰁛

e

d󰁛

k=0

ae,k
󰁛

u:e∈s∗u

wu

k󰁛

t=0

k!

(k − t)!
Ψk−t(Ne(S))w

t
u

=
󰁛

e

d󰁛

k=0

ae,k

k󰁛

t=0

k!

(k − t)!
Ψk−t(Ne(S))

󰁛

u:e∈s∗u

wt+1
u

≤
󰁛

e

d󰁛

k=0

ae,k

k󰁛

t=0

k!

(k − t)!(t+ 1)!
Ψk−t(Ne(S))Ψt+1(Ne(S

∗))

=
󰁛

e

d󰁛

k=0

ae,k
k + 1

k+1󰁛

t=1

󰀕
k + 1
t

󰀖
Ψk+1−t(Ne(S))Ψt(Ne(S

∗)).

Using Lemma 4b (observe that it implies that Ψt(A) ≤ Ψk+1(A)
t

k+1 for any non-negative integer t ≤ k+1
and multi-set of reals A), the binomial theorem, inequality αλ + βλ ≤ (α + β)λ for every α,β ≥ 0 and
λ ≥ 1, and the definition of the potential function, we obtain

1

ρ
Φ(S) ≤

󰁛

e

d󰁛

k=0

ae,k
k + 1

k+1󰁛

t=1

󰀕
k + 1
t

󰀖
Ψk+1(Ne(S))

k+1−t
k+1 Ψk+1(Ne(S

∗))
t

k+1

=
󰁛

e

d󰁛

k=0

ae,k
k + 1

󰀕󰀓
Ψk+1(Ne(S))

1
k+1 +Ψk+1(Ne(S

∗))
1

k+1

󰀔k+1
−Ψk+1(Ne(S))

󰀖

≤
󰁛

e

d󰁛

k=0

ae,k
k + 1

󰀓
Ψk+1(Ne(S))

1
d+1 +Ψk+1(Ne(S

∗))
1

d+1

󰀔d+1
− Φ(S).

We now apply Minkowski inequality twice on the double sum at the rightmost part of this last inequality
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and use the definition of the potential function to obtain

(1 + 1/ρ)Φ(S) ≤
󰁛

e

󰀳

󰁃
󰀣

d󰁛

k=0

ae,k
k + 1

Ψk+1(Ne(S))

󰀤 1
d+1

+

󰀣
d󰁛

k=0

ae,k
k + 1

Ψk+1(Ne(S
∗))

󰀤 1
d+1

󰀴

󰁄

d+1

≤

󰀳

󰁃
󰀣
󰁛

e

d󰁛

k=0

ae,k
k + 1

Ψk+1(Ne(S))

󰀤 1
d+1

+

󰀣
󰁛

e

d󰁛

k=0

ae,k
k + 1

Ψk+1(Ne(S
∗))

󰀤 1
d+1

󰀴

󰁄

d+1

=
󰀓
(Φ(S))

1
d+1 + (Φ(S∗))

1
d+1

󰀔d+1
.

The above inequality yields

(Φ(S))
1

d+1 ≤ 1

(1 + 1/ρ)
1

d+1 − 1
(Φ(S∗))

1
d+1 . (2)

By Claim 2, we have (1 + 1/ρ)
1

d+1 − 1 ≥
󰀓
ρ

1
d+1 (ρ+ 1)

d
d+1 (d+ 1)

󰀔−1
. Using this observation, inequality

(2) implies that

Φ(S) ≤ ρ(ρ+ 1)d(d+ 1)d+1Φ(S∗)

as desired. ⊓⊔

In the rest of the paper, we denote by θd(ρ) the upper bounds on the ρ-stretch given by Lemmas 15 and
16, namely θ1(ρ) = 3+

√
5

2 + 6(ρ − 1) and θd(ρ) = ρ(ρ + 1)d(d + 1)d+1. The next lemma extends these
bounds to partial potentials.

Lemma 17 Consider a Ψ-game of degree d and a state S which is a ρ-approximate pure Nash equilibrium
for a set of players R ⊆ N . Then, ΦR(S) ≤ θd(ρ)ΦR(S

∗) for any state S∗ such that each player in N \R
uses the same strategy in S and S∗.

Proof. In our proof, we will use the property

Ψk(A ∪B) =

k󰁛

t=0

󰀕
k
t

󰀖
Ψk−t(A)Ψt(B) (3)

for every two multi-sets of positive reals A and B. To see why (3) holds, observe that the product
Ψk−t(A)Ψt(B) equals (k − t)!t! times the sum of all products of monomials of degree k − t with ele-
ments of A with monomials of degree t with elements of B.

Given state S in the original game, we define the Ψ-game (R, (wu)u∈R, (Σu)u∈R, (āe,t)e∈E,t=0,...,d)
with

āe,t =

d󰁛

k=t

ae,k

󰀕
k
t

󰀖
Ψk−t(N

N\R
e (S)).

Observe that the parameters āe,k depend only on the strategies of players in N \R in S.
Now, given any state S′ in the original game, we denote by S̄′ the state in the new game in which each

player in R uses the strategy she uses in S′. We also use the notation c̄u for the cost of a player u ∈ R in the
new game and Φ̄ for its potential function.
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We will first show that c̄u(S̄′) = ĉu(S
′) for every state S̄′ of the new game such that each player

u ∈ N \ R uses the same strategy in S′ and S. Consequently, since state S is a ρ-approximate equilibrium
for the players in R in the original game, state S̄ is a ρ-approximate equilibrium in the new game. We have

c̄u(S̄
′) = wu

󰁛

e∈su

d󰁛

t=0

āe,tΨt(Ne(S̄
′)) = wu

󰁛

e∈su

d󰁛

t=0

Ψt(N
R
e (S′))

d󰁛

k=t

ae,k

󰀕
k
t

󰀖
Ψk−t(N

N\R
e (S))

= wu

󰁛

e∈su

d󰁛

k=0

ae,k

k󰁛

t=0

󰀕
k
t

󰀖
Ψk−t(N

N\R
e (S′))Ψt(N

R
e (S′)) = wu

󰁛

e∈su

d󰁛

k=0

ae,kΨk(Ne(S
′))

= ĉu(S
′).

The first equality follows by the definition of c̄u(S̄′), the second one follows since Ne(S̄
′) = NR

e (S′) and
by the definition of āe,k, the third one follows by exchanging the sums and since each player in N \ R use
the same strategy in states S and S′ (hence, NN\R

e (S) = N
N\R
e (S′)), the fourth one follows by equality

(3), and the last one follows by the definition of ĉu(S′).
We now show that Φ̄(S̄′) = ΦR(S

′). We have

Φ̄(S̄′) =
󰁛

e

d󰁛

t=0

āe,t
t+ 1

Ψt+1(Ne(S̄
′))

=
󰁛

e

d󰁛

t=0

Ψt+1(N
R
e (S′))

d󰁛

k=t

ae,k
k!

(t+ 1)!(t− k)!
Ψk−t(N

N\R
e (S))

=
󰁛

e

d󰁛

k=0

ae,k
k + 1

k󰁛

t=0

󰀕
k + 1
t+ 1

󰀖
Ψk−t(N

N\R
e (S′))Ψt+1(N

R
e (S′))

=
󰁛

e

d󰁛

k=0

ae,k
k + 1

k+1󰁛

t=1

󰀕
k + 1
t

󰀖
Ψk+1−t(N

N\R
e (S′))Ψt(N

R
e (S′))

=
󰁛

e

d󰁛

k=0

ae,k
k + 1

󰀣
k+1󰁛

t=0

󰀕
k + 1
t

󰀖
Ψk+1−t(N

N\R
e (S′))Ψt(N

R
e (S′))−Ψk+1(N

N\R
e (S′))

󰀤

=
󰁛

e

d󰁛

k=0

ae,k
k + 1

Ψk+1(N
R
e (S′))−

󰁛

e

d󰁛

k=0

ae,k
k + 1

Ψk+1(N
N\R
e (S′))

= Φ(S′)− ΦN\R(S′)

= ΦR(S
′).

The first equality follows by the definition of Φ̄(S̄′), the second one follows since Ne(S̄
′) = NR

e (S′) and
by the definition of āe,k, the third one follows by exchanging the sums and since each player in N \ R use
the same strategy in states S and S′, the fourth one follows by simply changing the counter in the rightmost
sum, the fifth one is obvious, the sixth one follows by property (3), and the last two ones follow by the
definition of the (partial) potentials.

Since the state S̄ is a ρ-approximate equilibrium for the new game, the bounds on the ρ-stretch estab-
lished in Lemmas 15 and 16 imply that Φ̄(S̄) ≤ θd(ρ)Φ̄(S̄

∗). By our last equality above, we obtain that
ΦR(S) ≤ θd(ρ)ΦR(S

∗) and the proof is complete. ⊓⊔
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4 The algorithm

In this section we describe our algorithm (see the table below). The algorithm takes as input a Ψ-game G of
degree d with n players, an arbitrary initial state S of the game, and a small positive parameter γ. It produces
as output a state of G. The algorithm starts by initializing its parameters, namely ĉmax, ĉmin, m, g, q, and p
(lines 1-6). It first computes the minimum possible cost ĉmin among all players and the maximum cost ĉmax

experienced by players in the initial state S. Then, it sets the parameter m equal to log (ĉmax/ĉmin); in this
way, m is polynomial in the number of bits in the representation of the game (i.e., polynomial in the number
of bits necessary to store the parameters ae,k and the weights of the players). Then, the parameter q is set

close to 1 (namely, q = 1 + γ) and parameter p is set close to θd(q) (namely, p =
󰀓

1
θd(q)

− 2γ
󰀔−1

). Recall
that θd(q) is the bound on the q-stretch of the potential function of Ψ-games of degree d in the statements of
Lemmas 15 (for d = 1) and 16 (for d ≥ 2).

input : A Ψ-game G of degree d with a set N of n players, an arbitrary initial strategy S,
and γ > 0 with γ ∈ (0, 1/10] if d = 1 and γ = 1

8θd(2)
, otherwise

output: A state of G
1 ĉmin ← minu∈N ĉu(0−u,BRu(0));
2 ĉmax ← maxu∈N ĉu(S);
3 m ← log (ĉmax/ĉmin);

4 g ← 2
󰀃
1 +m(1 + γ−1)

󰀄d
ddnγ−3;

5 q ← 1 + γ;

6 p ←
󰀓

1
θd(q)

− 2γ
󰀔−1

;

7 for i ← 0 to m do bi ← ĉmaxg
−i;

8 ;
9 while there exists a player u ∈ N such that ĉu(S) ∈ [b1,+∞) and

ĉu(S−u,BRu(S)) < ĉu(S)/q do
10 S ← (S−u,BRu(S));
11 end
12 F ← ∅;
13 for phase i ← 1 to m− 1 do
14 while there exists a player u ∈ N \ F such that either ĉu(S) ∈ [bi,+∞) and

ĉu(S−u,BRu(S)) < ĉu(S)/p or ĉu(S) ∈ [bi+1, bi) and ĉu(S−u,BRu(S)) < ĉu(S)/q
do

15 S ← (S−u,BRu(S));
16 end
17 F ← F ∪ {u ∈ N \ F : ĉu(S) ∈ [bi,+∞)};
18 end

Algorithm 1: Computing approximate equilibria in Ψ-games.

Then, the algorithm runs a sequence of phases; within each phase, it coordinates best-response moves
of the players. This process starts (line 7) by computing a decreasing sequence of boundaries b0, b1, b2, ...,
bm that will be used to define the sets of players that are considered to move within each phase. Then, it
executes phase 0 (lines 8-10). During this phase, as long as there are players of cost at least b1 that have a q-
move, they play a best-response strategy. Hence, after the end of the phase, all players with cost higher than
b1 are in a q-approximate equilibrium. Then, the algorithm uses set F to keep the players whose strategies
have been irrevocably decided; F is initialized to ∅ in line 11. Phases 1 to m− 1 (lines 12-17) constitute the
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heart of our algorithm. During each such phase i, the algorithm repeatedly checks whether, in the current
state, there is a player that either has cost higher than bi that has a p-move or her cost is in [bi+1, bi) and has
a q-move. While such a player is found, she deviates to her best-response strategy. The phase terminates
when no such player exists and the algorithm irrevocably decides the strategy of the players that have cost
at least bi. These players are included in set F ; at this point, they are guaranteed to be at a p-approximate
equilibrium. Subsequent moves by other players may either increase their cost or decrease the cost they
could experience by deviating to another strategy. As we will show, these changes are not significant and
each player will still be at an almost p-approximate equilibrium at the end of all phases. The fact that plays a
crucial role towards proving such a claim is that, at the end of each phase i, any player with cost in [bi+1, bi)
is guaranteed to be in a q-approximate equilibrium. Note that bm ≤ ĉmin and, eventually, all players will be
included in set F .

We remark that the sequence of the phases is similar to the one in our algorithm for unweighted conges-
tion games with polynomial latency functions of constant degree d in [7]. However, there is an important
difference. In that context, each player is considered to move during only two consecutive phases; these
phases are defined statically based only on the characteristics of the particular player. The main reason that
allows this is that the cost that a player may experience by following a specific strategy may change by at
most a polynomial factor (namely, at most nd) during the execution of the algorithm. This is not the case in
the context of Ψ-games since the fact that the cost of a player depends on the weights of the other players
does not satisfy this polynomial relation. So, in the current algorithm, the players that are considered to
move within each phase are decided dynamically based on the cost they experience during a phase. In this
way, a player may (be considered to) move in many different phases.

In Section 5, we will prove the following statement.

Theorem 18 The algorithm computes a ρ̂d-approximate equilibrium for every Ψ-game of constant degree
d, where ρ̂1 = 3+

√
5

2 + O(γ) and ρ̂d ∈ dd+O(1). The running time is polynomial in γ−1 and in the number
of bits in the representation of the game.

Combined with Lemma 7, Theorem 18 immediately yields the following result for weighted congestion
games.

Theorem 19 When the algorithm is applied to the Ψ-game corresponding to a weighted congestion game
with polynomial latency functions of constant degree d, it computes a state which is a ρd-approximate
equilibrium for the latter, where ρ1 =

3+
√
5

2 +O(γ) and ρd ∈ d2d+O(1).

5 Analysis

This section is devoted to proving Theorem 18. Throughout the section we consider the application of the
algorithm on a Ψ-game of degree d and denote by Si the state computed by the algorithm after the execution
of phase i for i = 0, 1, ...,m − 1. Also, we use Ri to denote the set of players that make at least one move
during phase i. Our arguments are split in three parts. First (in Section 5.1), we present a key property
maintained by our algorithm stating that the Ri-partial potential is small when the phase i ≥ 1 starts. Then
(in Section 5.2), we use this fact together with the parameters of the algorithm to prove that the running
time is polynomial. The proof of the approximation guarantee follows in Section 5.3. Recall that the players
whose strategies are irrevocably decided during phase j ≥ 1 are at a p-approximate equilibrium at the end
of the phase. The purpose of the third part of the proof is to show that for each such player, neither her
cost increases significantly nor the cost she would experience by deviating to another strategy decreases
significantly after phase j. Hence, the approximation guarantee in the final state computed by the algorithm
is slightly higher than p.
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We remark that the analysis follows the same general steps as in our recent paper on unweighted con-
gestion games [7]. However, due to the definition of Ψ-games and the dependency of players’ cost on the
weights, different and significantly more involved arguments are required, especially in the first and third
step.

5.1 A key property

In order to prove the key property maintained by our algorithm, we will need the following lemma which
relates the Ri-partial potential to the cost they experience when they make their last move within phase i.

Lemma 20 Let ĉ(u) denote the cost of player u ∈ Ri just after making her last move within phase i ≥ 1.
Then,

ΦRi(S
i) ≤

󰁛

u∈Ri

ĉ(u).

Proof. Rename the players in Ri as u1, u2, ..., u|Ri| so that uj is the j-th player that performed her last
move within phase i ≥ 1. Also, denote by Si,j the state in which player uj performed her last move. Let
R

|Ri|
i = ∅ and Rj

i = {uj+1, uj+2..., u|Ri|} for j = 0, 1, 2, ..., |Ri|− 1. Then,

ΦRi(S
i) = Φ(Si)− ΦN\Ri(Si) =

|Ri|󰁛

j=1

󰀓
ΦN\Rj

i (Si)− ΦN\Rj−1
i (Si)

󰀔
=

|Ri|󰁛

j=1

Φ
N\Rj

i
uj (Si)

=

|Ri|󰁛

j=1

Φ
N\Rj

i
uj (Si,j) ≤

|Ri|󰁛

j=1

Φuj (S
i,j) =

󰁛

u∈Ri

ĉ(u).

The first three inequalities follow by the definition of the partial potential functions and the definition of sets
Rj

i . The fourth inequality follows by Claim 10 since players in N \Rj
i do not move after state Si,j and until

the end of the phase. The inequality follows by Claim 9 and the last equality follows by Claim 11 and the
definition of ĉ(u). ⊓⊔

We are ready to prove the main lemma of this subsection.

Lemma 21 For every phase i ≥ 1, it holds that ΦRi(S
i−1) ≤ γ−1nbi.

Proof. For the sake of contradiction, we assume that ΦRi(S
i−1) > γ−1nbi and we denote by Pi and Qi

the set of players in Ri whose last move was a p-move and q-move, respectively. Since each player in Pi

decreases her cost by at least (p− 1)ĉ(u) during her last move within phase i (see Claim 12), we have

ΦRi(S
i) ≤ ΦRi(S

i−1)− (p− 1)
󰁛

u∈Pi

ĉ(u).

By Lemma 20 and the fact that each player in Qi experiences a cost of at most bi when she makes her last
move within phase i, we have

󰁛

u∈Pi

ĉ(u) ≥ ΦRi(S
i)−

󰁛

u∈Qi

ĉ(u) ≥ ΦRi(S
i)− nbi.

Using the last two inequalities and our assumption, we obtain that

ΦRi(S
i) ≤ ΦRi(S

i−1)− (p− 1)ΦRi(S
i) + (p− 1)nbi

≤ (1 + (p− 1)γ)ΦRi(S
i−1)− (p− 1)ΦRi(S

i)
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which implies that

ΦRi(S
i) ≤

󰀕
1

p
+ γ

󰀖
ΦRi(S

i−1).

Now, consider state Si−1 and let Xi and Yi be the sets of players in Ri with cost at least bi and smaller
than bi, respectively. Notice that, by the definition of phase i − 1, Si−1 is a q-approximate equilibrium for
the players in Xi. We construct a new Ψ-game of degree d among the players in N as follows. The new
game has all resources of the original game; the parameters ae,k for these resources are the same as in the
original game. In addition, the new game has a new resource eu for each player u ∈ Yi; the parameters for
this resource are aeu,0 = bi/wu and aeu,k = 0 for k = 1, ..., d. Each player in N \ Yi has the same set of
strategies in the two games. The strategy set of player u ∈ Yi consists of the strategy su she uses in Si−1 as
well as strategy s′u ∪ {eu} for each strategy s′u ∕= su she has in the original game.

Let S̄i−1 be the state of the new game in which all players play their strategies in Si−1. Clearly, state
S̄i−1 is a q-approximate equilibrium for the players in Xi. Also, at state S̄i−1, each player u ∈ Yi expe-
riences a cost equal to the cost she experiences at state Si−1 of the original game, i.e., smaller than bi. In
the new game, any deviation of u would include resource eu and would increase the cost of player u to at
least wuaeu,0 = bi. Hence, S̄i−1 is a q-approximate equilibrium for the players of Yi as well. We use Φ̄ to
denote the potential of the new game. Since the players use the same strategies in states Si−1 and S̄i−1 and
the parameters ae,k of the original resources are the same in both games, we have Φ̄Ri(S̄

i−1) = ΦRi(S
i−1).

Now, let S̄i be the state in which each player in N \ Yi uses her strategy in Si and the strategies for the
players in Yi are defined as follows. Let u be a player of Yi and s′u be the strategy she uses at state Si of the
original game. Her strategy in state S̄i of the new game is s′u ∪ {eu} if s′u ∕= su and su otherwise. Observe
that, by the definition of the partial potential, we have that the partial potential Φ̄Ri(S̄

i) of the new game at
state S̄i is by at most

󰁓
u∈Yi

aeu,0Ψ1(Neu(S̄
i)) ≤ nbi higher than the partial potential of the original game

at state Si (due to the contribution of the additional resources to the potential value). Hence,

Φ̄Ri(S̄
i) ≤ ΦRi(S

i) + nbi ≤
󰀕
1

p
+ 2γ

󰀖
ΦRi(S

i−1) =

󰀕
1

p
+ 2γ

󰀖
Φ̄Ri(S̄

i−1) =
1

θd(q)
Φ̄Ri(S̄

i−1).

So, we have identified a state S̄i−1 of the new game which is a q-approximate equilibrium for the play-
ers in Ri and another state S̄i such that the players in N \ Ri use the same strategies in S̄i−1 and S̄i and
Φ̄Ri(S̄

i−1) > θd(q)Φ̄Ri(S̄
i). This contradicts Lemma 17 and, subsequently, it also contradicts our assump-

tion ΦRi(S
i−1) > γ−1nbi. The lemma follows. ⊓⊔

5.2 Bounding the running time

We will now use Lemma 21 and the properties of Ψ-games to prove that the algorithm terminates quickly.

Lemma 22 The algorithm terminates after a number of steps that is polynomial in the number of bits in the
representation of the game and γ−1.

Proof. Clearly, if the number of strategies is polynomial in the number of resources, computing a best-
response strategy for a player u can be trivially performed in polynomial time (by the definition of ĉu). This
is also the case for weighted congestion games in networks (where the number of strategies of a player can
be exponential) using a shortest path computation. So, it remains to bound the total number of player moves.

At the initial state, the total cost of the players and, consequently (by Lemma 13), its potential is at most
nĉmax. Each of the players that move during phase 0 decreases her cost and, consequently (by Theorem
5), the potential by at least (q − 1)b1 = γg−1ĉmax. Hence, the total number of moves in phase 0 is at
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most nγ−1g. For i ≥ 1, we have ΦRi(S
i) ≤ nbiγ

−1 (by Lemma 21). Each of the players in Ri that
move during phase i decreases her cost and, consequently (by Claim 12), the Ri-partial potential by at least
(q − 1)bi+1 = big

−1γ. Hence, phase i completes after at most ngγ−2 moves. In total, we have at most
mngγ−2 moves. The theorem follows by observing that g depends polynomially on m, n, and γ−1. ⊓⊔

5.3 Proving the approximation guarantee

It remains to prove that our algorithm computes approximate equilibria. Our proofs will exploit Lemma 21
as well as the following lemma which relates the cost of a player in a state to the partial potential of two
different subgames.

Lemma 23 Consider a Ψ-game of degree d, a player u and a set of players R ⊆ N \ {u}. Then, for every
state S and every 󰂃 > 0, it holds that

ĉu(S) ≤ (1 + 󰂃)ΦN\R
u (S) + ξ󰂃Φ

N\{u}
R (S),

where ξ󰂃 = (1 + 1/󰂃)ddd − 1.

Proof. In order to prove the lemma, we will need the following technical claim.

Claim 24 For any α,β ≥ 0 and integer d ≥ 1, it holds that (α+β)d+1 ≤ (1+󰂃)αd+1+(1+1/󰂃)dddβd+1.

Proof. Consider the function h(α) = (α + β)d+1 − (1 + 󰂃)αd+1. By setting its derivative equal to 0, we
obtain that it is maximized for α = β

󰀃
(1 + 󰂃)1/d − 1

󰀄−1
to the value 1+󰂃

((1+󰂃)1/d−1)d
βd+1. By Claim 2, we

have that (1 + 󰂃)1/d − 1 ≥ 󰂃
d(1+󰂃)1−1/d . Hence, h(α) ≤ (1 + 1/󰂃)dddβd+1 as desired. ⊓⊔

Now, let k be an integer such that 1 ≤ k ≤ d + 1, A a multiset of reals, and b ≥ 0. Using Lemma 4f,
inequality αλ + βλ ≤ (α+ β)λ for every α,β ≥ 0 and λ ≥ 1, and Claim 24, we have

Ψk(A ∪ {b})−Ψk(A) ≤
󰀓
Ψk({b})1/k +Ψk(A)

1/k
󰀔k

−Ψk(A)

≤
󰀓
Ψk({b})

1
d+1 +Ψk(A)

1
d+1

󰀔d+1
−Ψk(A)

≤ (1 + 󰂃)Ψk({b}) + ξ󰂃Ψk(A). (4)

Also, let Q = N \ (R ∪ {u}) and define

δe,t =

d󰁛

k=max{t−1,0}

ae,k
k + 1

󰀕
k + 1
t

󰀖
Ψk+1−t(N

Q
e (S))

for each resource e and t = 0, 1, ..., d+ 1. Also, let P be a possibly empty set such that P ⊆ R ∪ {u}. By
the definition of function Ψk+1 and by exchanging the sums, we have

ΦP∪Q(S) =
󰁛

e

d󰁛

k=0

ae,k
k + 1

Ψk+1(N
P∪Q
e (S))

=
󰁛

e

d󰁛

k=0

ae,k
k + 1

k+1󰁛

t=0

󰀕
k + 1
t

󰀖
Ψt(N

P
e (S))Ψk+1−t(N

Q
e (S))

=
󰁛

e

d+1󰁛

t=0

Ψt(N
P
e (S))

d󰁛

k=max{t−1,0}

ae,k
k + 1

󰀕
k + 1
t

󰀖
Ψk+1−t(N

Q
e (S))

=
󰁛

e

d+1󰁛

t=0

δe,tΨt(N
P
e (S)). (5)
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By Claim 11 and the definition of the partial potential we have ĉu(S) = Φu(S) = Φ(S)− ΦN\{u}(S).
Using the alternative expression for the potentials Φ(S) and ΦN\{u}(S) (i.e., equality (5)) as well as in-
equality (4), we obtain

ĉu(S) =
󰁛

e

d+1󰁛

k=0

δe,k

󰀓
Ψk(N

R∪{u}
e (S))−Ψk(N

R
e (S))

󰀔

=
󰁛

e∈su

d+1󰁛

k=1

δe,k

󰀓
Ψk(N

R∪{u}
e (S))−Ψk(N

R
e (S))

󰀔

≤
󰁛

e∈su

d+1󰁛

k=1

δe,k

󰀓
(1 + 󰂃)Ψk(N

{u}
e (S)) + ξ󰂃Ψk(N

R
e (S))

󰀔
.

The second equality follows since Ψ0(A) = 1 for every (possibly empty) multiset of reals A. Using the fact
again together with the fact Ψk(∅) = 0 for k ≥ 1, as well as the definitions of the potentials, we obtain

ĉu(S) ≤ (1 + 󰂃)
󰁛

e∈su

d+1󰁛

k=0

δe,k

󰀓
Ψk(N

{u}
e (S))−Ψk(∅)

󰀔
+ ξ󰂃

󰁛

e∈su

d+1󰁛

k=0

δe,k
󰀃
Ψk(N

R
e (S))−Ψk(∅)

󰀄

≤ (1 + 󰂃)
󰁛

e

d+1󰁛

k=0

δe,k

󰀓
Ψk(N

{u}
e (S))−Ψk(∅)

󰀔
+ ξ󰂃

󰁛

e

d+1󰁛

k=0

δe,k
󰀃
Ψk(N

R
e (S))−Ψk(∅)

󰀄

= (1 + 󰂃)
󰀓
ΦN\R(S)− ΦN\(R∪{u})(S)

󰀔
+ ξ󰂃

󰀓
ΦN\{u}(S)− ΦN\(R∪{u})(S)

󰀔

= (1 + 󰂃)ΦN\R
u (S) + ξ󰂃Φ

N\{u}
R (S)

and the proof is complete. ⊓⊔

Using Lemmas 21 and 23, we will show that neither the cost of a player increases significantly after
the phase at the end of which her strategy was irrevocably decided (in Lemma 25), nor the cost she would
experience by deviating to another strategy decreases significantly (in Lemma 26).

Lemma 25 Let u be a player whose strategy was irrevocably decided at phase j. Then, ĉu(Sm−1) ≤
(1 + 2γ)ĉu(S

j).

Proof. For every i > j and 󰂃 > 0, we apply Lemma 23 for strategy Si, player u, and the set of players Ri

that move during phase i to obtain

ĉu(S
i) ≤ (1 + 󰂃)ΦN\Ri

u (Si) + ξ󰂃Φ
N\{u}
Ri

(Si)

= (1 + 󰂃)ΦN\Ri
u (Si−1) + ξ󰂃Φ

N\{u}
Ri

(Si)

≤ (1 + 󰂃)Φu(S
i−1) + ξ󰂃ΦRi(S

i)

≤ (1 + 󰂃)ĉu(S
i−1) + ξ󰂃ΦRi(S

i−1).

The equality holds by Claim 10 since the players in N \ Ri do not move during phase i. The second
inequality follows by Claim 9. The last one follows by Claim 11 and since the Ri-partial potential decreases
during phase i.

We now set 󰂃 = (1 + γ)1/m − 1. This implies that (1 + 󰂃)m = 1 + γ. Also, by Claim 2, we get
󰂃 ≥ γ

m(1 + γ)1/m−1 ≥ (m(1 + γ−1))−1 and, by the definition of the parameters g and γ, ξ󰂃 = (1 +m(1 +
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γ−1))ddd − 1 ≤ gγ3

2n ≤ gγ
2(1+γ−1)n

. Using the above inequality together with these observations, we obtain

ĉu(S
m−1) ≤ (1 + 󰂃)m−1−j ĉu(S

j) + ξ󰂃

m−1󰁛

i=j+1

(1 + 󰂃)m−1−iΦRi(S
i−1)

≤ (1 + 󰂃)mĉu(S
j) + (1 + 󰂃)mξ󰂃

m−1󰁛

i=j+1

ΦRi(S
i−1)

≤ (1 + γ)ĉu(S
j) + (1 + γ)ξ󰂃

m−1󰁛

i=j+1

nbiγ
−1

= (1 + γ)ĉu(S
j) + (1 + γ−1)ξ󰂃nbj

m−1−j󰁛

i=1

g−i

≤ (1 + γ)ĉu(S
j) + 2(1 + γ−1)ξ󰂃nbjg

−1

≤ (1 + γ)ĉu(S
j) + γbj

≤ (1 + 2γ)ĉu(S
j).

The second inequality is obvious, the third one follows by Lemma 21 and by the relation between 󰂃 and γ,
the equality follows by the definition of bi, the fourth inequality follows since g ≥ 2 which implies that󰁓

i≥1 g
−i ≤ 2g−1, the fifth one follows by our observation about ξ󰂃 above, and the last one follows since,

by the definition of the algorithm, the fact that the strategy of player u is irrevocably decided at phase j
implies that ĉu(Sj) ≥ bj . ⊓⊔

Lemma 26 Let u be a player whose strategy was irrevocably decided at phase j and let s′u be any of her
strategies. Then, ĉu(Sm−1

−u , s′u) ≥ (1− 2γ)ĉu(S
j
−u, s

′
u).

Proof. For every i > j and 󰂃 > 0, we apply Lemma 23 for state (Si−1
−u , s′u), player u, and the set Ri of

players that move during phase i to obtain

ĉu(S
i−1
−u , s′u) ≤ (1 + 󰂃)ΦN\Ri

u (Si−1
−u , s′u) + ξ󰂃Φ

N\{u}
Ri

(Si−1
−u , s′u)

= (1 + 󰂃)ΦN\Ri
u (Si

−u, s
′
u) + ξ󰂃Φ

N\{u}
Ri

(Si−1)

≤ (1 + 󰂃)Φu(S
i
−u, s

′
u) + ξ󰂃ΦRi(S

i−1)

= (1 + 󰂃)ĉu(S
i
−u, s

′
u) + ξ󰂃ΦRi(S

i−1)

and, equivalently,

ĉu(S
i
−u, s

′
u) ≥ 1

1 + 󰂃
ĉu(S

i−1
−u , s′u)−

ξ󰂃
1 + 󰂃

ΦRi(S
i−1).

The first equality in the derivation above follows by Claim 10 since the players in N \ Ri use the same
strategies in states (Si−1

−u , s′u) and (Si
−u, s

′
u) and since all players besides u use the same strategies in states

(Si−1
−u , s′u) and Si−1. The second inequality follows by Claim 9 and the last equality follows by Claim 11.

We now set 󰂃 = (1 + γ)1/m − 1. This implies that (1 + 󰂃)−m = (1 + γ)−1 ≥ 1 − γ. Also, by
Claim 2, we get 󰂃 ≥ γ

m(1 + γ)1/m−1 ≥ (m(1 + γ−1))−1 and, by the definition of the parameter g,
ξ󰂃 = (1 + m(1 + γ−1)ddd − 1 ≤ gγ3

2n . Using the above inequality together with these observations, we
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obtain

ĉu(S
m−1
−u , s′u) ≥ (1 + 󰂃)j−m+1ĉu(S

j
−u, s

′
u)− ξ󰂃

m−1󰁛

i=j+1

(1 + 󰂃)i−m−2ΦRi(S
i−1)

≥ (1 + 󰂃)−mĉu(S
j
−u, s

′
u)− ξ󰂃

m−1󰁛

i=j+1

ΦRi(S
i−1)

≥ (1− γ)ĉu(S
j
−u, s

′
u)− ξ󰂃

m−1󰁛

i=j+1

nbiγ
−1

= (1− γ)ĉu(S
j
−u, s

′
u)− ξ󰂃nγ

−1bj

m−1−j󰁛

i=1

g−i

≥ (1− γ)ĉu(S
j
−u, s

′
u)− 2ξ󰂃nγ

−1bjg
−1

≥ (1− γ)ĉu(S
j
−u, s

′
u)− γ2bj

≥ (1− γ)ĉu(S
j
−u, s

′
u)− γĉu(S

j)/p

≥ (1− 2γ)ĉu(S
j
−u, s

′
u).

The second inequality is obvious, the third inequality follows by Lemma 21 and by the relation between 󰂃
and γ, the equality follows by the definition of bi, the fourth inequality follows since g ≥ 2 which implies
that

󰁓
i≥1 g

−i ≤ 2g−1, the fifth inequality follows by our observation about ξ󰂃 above, the sixth inequality
follows since γ ≤ 1/p and ĉu(S

j) is higher than bj when the strategy of player u is irrevocably decided at
the end of phase j, and the last inequality follows since player u has no incentive to make a p-move at state
Sj . ⊓⊔

We are now ready to use the last two lemmas in order to prove the approximation guarantee of the
algorithm. This will complete the proof of Theorem 18.

Lemma 27 Given a Ψ-game of degree d, the algorithm computes a ρ̂d-approximate equilibrium with ρ̂1 ≤
3+

√
5

2 +O(γ) and ρ̂d ≤ dd+o(d).

Proof. Consider the application of the algorithm to a Ψ-game and let u be any player whose strategy is
irrevocably decided at the end of phase j of the algorithm. Also, let s′u be any other strategy of this player.
By Lemmas 25 and 26 and since, by the definition of the algorithm, player u has no incentive to make a
p-move at state Sj , we have

ĉu(S
m−1)

ĉu(S
m−1
−u , s′u)

≤ (1 + 2γ)

(1− 2γ)
· ĉu(S

j)

ĉu(S
j
−u, s

′
u)

≤ 1 + 2γ

1− 2γ

󰀕
1

θd(1 + γ)
− 2γ

󰀖−1

.

Hence, the right-hand side of the above inequality upper-bounds the approximation guarantee of the algo-
rithm. For d = 1, the parameter γ takes values in (0, 1/10]. Since γ ∈ (0, 1/10] and θ1(1+γ) = 3+

√
5

2 +6γ
(see Lemma 15), by making simple calculations, we obtain that the algorithm computes a ρ̂1-approximate
equilibrium with

ρ̂1 ≤
3 +

√
5

2
+ 110γ.

For larger values of d, the algorithm uses γ = 1
8θd(2)

. Observe that
󰀓

1
θd(1+γ) − 2γ

󰀔−1
≥ 4

3θd(2). Also,

observe that γ < 1/34 and hence 1+2γ
1−γ ≤ 9

8 . By using the value for θd(2) from Lemma 16, we have that the
algorithm computes a ρ̂d-approximate equilibrium with ρ̂d ≤ 3d+1(d+ 1)d+1 ∈ dd+o(d). ⊓⊔
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6 Open problems

Our work reveals several open questions. The obvious one is whether approximate equilibria with a better
approximation guarantee can be computed in polynomial time. We believe that our techniques have reached
their limits for linear weighted congestion games. However, in the case of superlinear latency functions,
approximations of weighted congestion games by potential games different than Ψ-games might yield im-
proved approximation guarantees. Another interesting open question is whether a different algorithm that
bases its decisions on the cost experienced by the players in the original game can compute an approximate
equilibrium for weighted congestion games with superlinear latency functions. We conjecture that this is
possible with an extension of our algorithm, probably at the cost of a slightly worse approximation guaran-
tee. We believe that Ψ-games can still play a role in the analysis of such an algorithm. However, there are
technical difficulties that we have not managed to overcome yet.
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