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Abstract

There is a growing interest in studying sample-based prophet inequality with the motiva-
tion stemming from the connection between the prophet inequalities and the sequential posted
pricing mechanisms. Rubinstein, Wang, and Weinberg (ITCS 2021) established the optimal
single-choice prophet inequality with only a single sample per each distribution. Our work
considers the sample-based prophet inequality with less than one sample per distribution, i.e.,
scenarios with no prior information about some of the random variables. Specifically, we propose
a p-sample model, where a sample from each distribution is revealed with probability p ∈ [0, 1]
independently across all distributions. This model generalizes the single-sample setting of Ru-
binstein, Wang, and Weinberg (ITCS 2021), and the i.i.d. prophet inequality with a linear
number of samples of Correa et al. (EC 2019). Our main result is the optimal p

1+p prophet

inequality for all p ∈ [0, 1].

1 Introduction

Prophet inequality is a fundamental problem in optimal stopping theory and online Bayesian op-
timization. Consider a sequence of n boxes arriving online, each box i associated with a random
value Xi sampled from a priori known distribution Di. The actual value of Xi is observed upon
the arrival of the box i and the algorithm decides immediately whether to accept it. If the box
is accepted, the algorithm collects the observed value Xi and the game ends. Else, the algorithm
proceeds to the next box. The goal is to maximize the value of the accepted box and to compete
against the expected maximum value of all boxes, i.e., E[maxiXi]. The benchmark is also known
as the prophet, since it can be interpreted as the expected value of an optimal algorithm that
can look into the values of all boxes before making a choice. Krengel and Sucheston [23, 24] first
established an optimal 1

2 -competitive prophet inequality. Subsequently, Samuel-Cahn [27] provided
a single-threshold algorithm with the same tight competitive ratio.

The classic single-choice prophet inequality is equivalent to the problem of designing revenue-
maximizing sequential posted pricing mechanism [20, 10]. That connection has inspired a number
of generalizations in the field of algorithmic mechanism design to multi-choice settings such as
matroids [4, 22, 16], matchings and combinatorial auctions [15, 18, 14], and general downward-
closed constraints [25]. Furthermore, the sequential posted pricing motivates the study of prophet
inequalities with limited information, as the complete knowledge of the prior distributions (Di)

n
i=1 is

a rather strong and unrealistic assumption as was pointed out by Azar, Kleinberg, and Weinberg [1].
In the limited information setting, the algorithm may only access a limited number of samples

per each distribution Di instead of the complete description of Di in the full-information case. This
model is arguably more realistic than the full-information model, since samples are easy to collect,
e.g., from historical data. Azar, Kleinberg, and Weinberg designed constant competitive algorithms
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with only a constant number of samples per distribution for various matroid and matching settings.
Recently, Rubinstein, Wang, and Weinberg [26] proved that the optimal 1/2 competitive ratio for
the single-choice prophet inequality can be achieved, with only a single sample per distribution.
Furthermore, Caramanis et al. [3] explored the limit of single-sample prophet inequalities for ma-
troids, matching, and combinatorial auctions. Correa et al. [5] also studied the prophet secretary
problem with a single sample per distribution and obtained a 0.635-competitive algorithm.

1.1 Our Contributions

Model and Result. In the regime with little prior information, it is reasonable to assume that
some distributions may be completely new, i.e., they have no samples whatsoever. We propose a
new framework of p-sparse sample access parameterized by p ∈ [0, 1] and apply it to the single-
choice prophet inequality. Specifically, we assume that independently for each box, the algorithm
sees a sample from it with probability p. It generalizes the single-sample setting of Rubinstein,
Wang, and Weinberg [26] when p = 1.

Our less than one sample regime also generalizes the model of Correa et al. [7] who studied
the setting with linear βn and sublinear o(n) number of samples for n i.i.d. distributions. They
showed that no algorithm can achieve a competitive ratio better than 1/e when β = o(1), and
designed a (1 − 1/e)-competitive algorithm for β = 1. Subsequently, Correa et al. [8] achieved a
tight competitive ratio of 1+β

e for all β ≤ 1
e−1 , and improved the competitive ratio to 0.648 for

β = 1.
To the best of our knowledge, we are the first to study the less than one sample setting for non

identical distributions. Our main result is a tight p
1+p -competitive algorithm for the single-choice

prophet inequality. Our algorithm is based on the simple Maximum-sample algorithm [26] that
stops at the first value box i with a value Xi greater than the maximum sample. However, our
version (see Definition 2.1 later in the paper) has a non trivial alternation.

Techniques. First, note that stochastic optimization with a constant number of samples makes
problem so much harder than the full information case, e.g., in the closely related auction literature
on revenue maximization with samples, designing mechanisms with 1 sample per distribution [12,
17] is quite different from the full information setting. Moreover, it is a daunting task to get an
improvement on the revenue guarantee from the setting with 1 sample to 2 samples per distribution
(see, e.g., [2, 11]).

At the technical level our analysis proceeds by reducing the original problem of maximizing the
expected value to a simpler objective of stopping at any of the top k card values for each fixed
k ∈ N. We first studied the problem for k = 1 and identified a hard family of instances that already
gives a tight upper bound of p

1+p on the competitive ratio for any p ∈ (0, 1].
Next, we found the right variation of the Max-Sample algorithm for the objective of stopping

at the maximum (k = 1) with a matching lower bound of p
1+p on the competitive ratio. Our proof

proceeds by carefully constructing a set of disjoint events that would guarantee Max-Sample to win.
A challenging part was to define/select the events in such a way that would keep the number of
cases at a minimum. Lastly, we extended the analysis for k = 1 to arbitrary k ∈ N with a noticeably
more elaborate set of winning events and larger case analysis.

1.2 Further Related Works

A closely related problem to prophet inequality is the celebrated secretary problem. In this setting,
n elements arrive in a random arrival order. An online algorithm observes the value of each
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element and decide whether to take it immediately and irrevocably. Observe that in this setting,
the algorithm has no prior information of the n values. Recently, Kaplan, Naori, and Raz [21]
proposed a data-driven variant to the secretary problem. They assume that among the n values,
a fraction p of the values are given as samples to the algorithm in advance; the remaining values
either comes in an adversarial or in a random order. They designed an optimal algorithm for the
adversarial arrivals and a near optimal algorithm for the random arrivals. Duetting et al. [13]
generalized the latter setting to secretaries with advice and found an optimal algorithm for the
random arrival variant. Correa et al. [6] proposed a slightly different model in which each value is
sampled independently with probability p and designed optimal algorithms for all p. This model
bridges the secretary problem (when p = 0) and the i.i.d. prophet inequality (when p = 1). These
models have similar flavour to our problem, but are not directly comparable.

Another line of research in sample-based prophet inequality studies the sample complexity, i.e.,
how many samples are needed to almost (up to an ε error) match the competitive ratio in the
full-information case. First, Correa et al. [7] proved that O(n2) samples are sufficient to get the
competitive ratio of 0.745−ε in the i.i.d. prophet inequality setting, where the optimal algorithm [9]
with full information is 0.745-competitive. The sample complexity was later improved to O(n/ε6)
by Rubinstein, Wang, and Weinberg [26]. Guo et al. [19] further improved the dependency on ε by
establishing an upper bound of O(n/ε2).

2 Preliminaries

p-Sample Prophet Inequality There are n boxes, whose values v = (X1, . . . , Xn) are drawn
independently from D1 × . . . × Dn. In contrast to the classic prophet inequality, the algorithm
does not have knowledge about the underlying distribution in advance. Instead, for each random
variable Xi we observe a sample X̂i independently for all i ∈ [n] with probability p. For simplicity
of notations, we assume X̂i = 0 when we do not see a sample. The goal is to maximize the expected
value of the accepted box and to compete against the expected maximum E[maxiXi].

Our algorithm is defined as the following.

Definition 2.1 (Max-Sample algorithm). Given as input samples X̂1, . . . , X̂n, let T = maxi∈[n] X̂i

and i∗
def
== argmaxi X̂i (i

∗ = 0 if T = 0). Let Xj be the first observed random variable exceeding T .

If j ̸= i∗, take Xj , If j = i∗ then

{
take Xj w.p. 2p

1+p

skip Xj , take next Xℓ > T w.p. 1−p
1+p

Theorem 2.1. Max-Sample is p
1+p -competitive for the p-sample prophet inequality problem. More-

over, the ratio is the best possible for any p ∈ [0, 1].

For the algorithmic part of the result, we shall focus on the following card model and analyze
the performance of our algorithm. The card model is adapted from the work of Rubinstein, Wang,
and Weinberg [26] and Correa et al. [5].

Card Model. Each box corresponds to a card Ci = {ai, bi} with two unknown values written
on either side. Each card is put on the table with one of its sides independently and uniformly at
random facing down and the other side facing up. The card i corresponds to an ordered pair (vi, si):
a value at the bottom, and a value on top. I.e., Pr[vi = ai, si = bi] = Pr[vi = bi, si = ai] = 0.5. The
online algorithm gets to see some of the top values in the initial stage before making any decisions.
Each top value si is revealed (independently for all i ∈ [n]) to the algorithm with probability p,
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with remaining probability 1 − p the value is erased and is substituted with a blank. The online
algorithm proceeds by flipping the cards one by one starting from C1 and until the last card Cn.
After flipping a card Ci, the algorithm observes the value vi at the bottom and may either take it
and stop, or discard the card Ci and continue. We denote the set of cards with revealed samples
as R ⊆ [n] and the distribution of the revealed samples R ∼ R. Also for each card i ∈ [n] we use
ri ∈ {0, 1} to indicate whether the sample on top of card i is revealed (ri = 1) or not (ri = 0). We
denote by r ∈ {0, 1}n the vector of revealed samples. We slightly abuse the notations and use R to
denote the distribution of r ∼ R. The algorithm sees revealed samples s(R) and aims to maximize
the value of the accepted card and compete against the prophet in the card model: E

v,s
[maxi∈[n] vi].

For analysis purpose, we sort the multi-set of values V = {ai}ni=1 ∪ {bi}ni=1 in decreasing order.
We denote the elements in the sorted multi-set V as w1 ≥ w2 ≥ . . . ≥ w2n. We use σ : [2n] → [n]
to denote the indexes of the cards in V . Specifically, σ1 is the index of the card with the largest
values in V , σ2 is the index of the card with the second largest value, etc.

It is straightforward to observe that a competitive algorithm for the card model preserves its
competitive ratio in the p-sample prophet inequality setting, by setting the values {ai, bi} to be
independent samples of Di.

Roadmap. In Section 3, we consider the simpler task of stopping at the maximum value card.
Built on it, we prove our main result in Section 4. Finally, in Section 5, we provide a matching
hardness result.

3 Stopping at the maximum

Consider the case when the largest value w1 is much larger than the rest wi ∈ V . In this case,
the contribution of all other values to the expected reward of our algorithm and the prophet are
negligibly small and the question is how often our algorithm stops at Cσ1 and gets vσ1 = w1.

Our objective then is to stop at the global maximum w1 in V . The prophet gets w1 with
probability 0.5, whenever vσ1 = w1, i.e., when w1 is at the bottom of the card Cσ1 . We show that
Max-Sample stops at the maximum w1 with probability at least p

2(1+p) , which gives us the desired
guarantee in the special case when w1 is much larger than all other wi ∈ V . The analysis will be
helpful for obtaining the result in general case.

Theorem 3.1. Given that maximum w1 is on the value side, i.e., vσ1 = w1, Max-Sample stops at
the maximum with probability at least p

1+p .

Before we proceed with the proof, we give an example demonstrating why the original algorithm
of Rubinstein et al. [26] of accepting the first item above maximum sample has strictly worse
performance than p

1+p . The instance has n = 2 boxes: the first box with distribution F1 = Uni[1, 2],

the second box with distribution F2 = {v = 10000 w.p. 1
100 , 0 w.p. 99

100}; let p = 1
2 . We may only

consider the case when X2 = 10000, X̂2 = 0 that contributes 10000 · 1
100 ·

199
200 = 99.5 to the expected

value of the prophet, since the total contribution in all other cases is less than 3. In this case the
algorithm of Rubinstein et al. gets X1, if and only if X̂1 > X1 which happens with probability
p
2 < p

1+p .

Proof. One difficulty in the analysis is that we know neither the order of cards, nor the pairings of
w1, w2, . . . , w2n (i.e., which pairs of them are on the same cards). Our approach in dealing with so
many possibilities will be to describe a sequence of disjoint events that guarantee our algorithm to
stop at w1. We still need to consider a few cases, but only a small number.
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We begin constructing these events by considering the cards with the largest values w2, . . . , wt

until the next one σt+1 ∈ {σ1, . . . , σt}, i.e., the first time when wt+1 is on the same card with one
of the previous values {w1, . . . , wt}. Let us first deal with the case when σt+1 ̸= σ1, i.e., wt+1 is on
the same card with one of the {w2, . . . , wt}.

Case 1: σt+1 ̸= σ1. We first consider the event E1 that w2 is a visible sample (sσ2 = w2, rσ2 = 1),
then Max-Sample sets the threshold T = w2 and waits until w1 (recall that w1 must be at the
bottom of its card Cσ1) at which point the algorithm must stop and take w1. We have Pr[E1] = p

2 .
Next, if sσ2 = w2 and the sample w2 is not revealed rσ2 = 0, then we can look at w3. If w3 is

a revealed sample (w3 = sσ3 , rσ3 = 1) then Max-Sample must stop at w1. This is our second event
E2: (sσ2 = w2, rσ2 = 0), and (w3 = sσ3 , rσ3 = 1). Similarly, Max-Sample must stop at w1 for each
of the following events {Eℓ}t−1

ℓ=1:

Eℓ
def
=={∀i ∈ [2, ℓ] (sσi = wi, rσi = 0), and (wℓ+1 = sσℓ+1

, rσℓ+1
= 1})

Pr [Eℓ] =
(
1− p

2

)ℓ−1 p

2
. (1)

When we continue our sequence of events {Eℓ}t−1
ℓ=1 to ℓ = t, the value wt+1 appears on one of

the previously fixed cards Cσj for 2 ≤ j ≤ t. We note that Max-Sample algorithm skips the card

with the maximum sample with probability 1−p
1+p . Thus it may still stop at w1 even when vσj = wj

(wj is at the bottom of Cσj card). Finally, we define the last event Et as follows:

Et
def
==

{
∀i ∈ [t] \ {1, j}

(
sσi = wi

rσi = 0

)
and

(
wj = vσj , wt+1 = sσj

rσj = 1, alg. ignores wj

)}
Pr [Et] =

(
1− p

2

)t−2

· p
2
· 1− p

1 + p
. (2)

As all events {Eℓ}tℓ=1 are disjoint, we may combine (1) and (2) and get

Pr [alg. takes w1] ≥
t∑

ℓ=1

Pr [Eℓ] =
p

2
·

[(
1− p

2

)t−2

· 1− p

1 + p
+

t−2∑
i=0

(
1− p

2

)i
]

=
p

1 + p

(
1− p

2

)t−1

+
p

2
·
1−

(
1−p
2

)t−1

1−
(
1−p
2

) =
p

1 + p
(3)

Case 2: σt+1 = σ1. We have the same events {Eℓ}t−1
ℓ=1 as in (1). The Et is now a little different,

as we want Max-Sample algorithm to stop at card Cσt+1 :

Et
def
==

{
∀i ∈ [t] \ {1}

(
sσi = wi

rσi = 0

)
and

(
w1 = vσ1 , wt+1 = sσ1

rσj = 1, alg. takes w1

)}
Pr [Et] =

(
1− p

2

)t−2

· p · 2p

1 + p
. (4)

We continue the sequence of events {Eℓ}tℓ=1 after t by considering new cards Cσt+2 , Cσt+3 , . . . , Cσk

until we get σk+1 ∈ {σ1, . . . , σk}\{σ1, σt+1}, i.e., the first time wk+1 appears on the same card with
one of the previous {w1, . . . , wk}. Notice that w1 and wt+1 are on the same card, and w1 is always
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at the bottom of Cσ1 . We would like the sample wt+1 = sσ1 not to be revealed (i.e., rσ1 = 0), which
happens with probability (1− p). We define {Eℓ}k−1

ℓ=t+1 as follows

Eℓ
def
==

{(
vσ1 = w1

rσ1 = 0

)
,∀i ∈ [ℓ] \ {1, t+ 1}

(
sσi = wi

rσi = 0

)
, and

(
wℓ = sσℓ

rσℓ
= 1

)}
Pr [Eℓ] =(1− p) ·

(
1− p

2

)ℓ−2

· p
2
. (5)

Finally, let j be the index such that wk+1 appears on one of the previously fixed cards Cσj for
2 ≤ j ≤ k. We define the last event Ek similar to (2) as follows.

Ek
def
==

{
∀i ∈ [k] \ {j, t+ 1}

(
sσi = wi

rσi = 0

)
,

(
wj = vσj , wk+1 = sσj

rσj = 1, alg. ignores wj

)}
Pr [Ek] =(1− p) ·

(
1− p

2

)k−3

· p
2
· 1− p

1 + p
. (6)

As all events {Eℓ}kℓ=1 are disjoint, we combine (1),(4), (5), and (6) to get

Pr [alg. takes w1] ≥
k∑

ℓ=1

Pr [Eℓ] =
p

2
·
t−2∑
i=0

(
1− p

2

)i

+

(
1− p

2

)t−2

· 2p2

1 + p
+

p ·
k−1∑

ℓ=t+1

(
1− p

2

)ℓ−1

+

(
1− p

2

)k−1

· 2p

1 + p
>

p

1 + p

[
1−

(
1− p

2

)t−1
]

+
p2

1 + p

(
1− p

2

)t−1

+ p ·
(
1− p

2

)t 1−
(
1−p
2

)k−1−t

1− 1−p
2

+

(
1− p

2

)k−1

· 2p

1 + p

=
p

1 + p
− p

1 + p

(
1− p

2

)t−1

(1− p) +
2p

1 + p

(
1− p

2

)t

·

[
1−

(
1− p

2

)k−t−1
]
+

(
1− p

2

)k−1 2p

1 + p
=

p

1 + p
, (7)

where to get the last inequality we simply decreased the term Pr[Et] in (4) to
(
1−p
2

)k−1
p2

1+p .

Theorem 3.1 follows from (3) in the case σt+1 ̸= σ1 and from (7) in the case σt+1 = σ1.

4 Maximizing Expectation

In this section we prove our main result that Max-Sample algorithm achieves optimal competitive
ratio of p

1+p on arbitrary instances. To this end we consider a few special instances with top k

values being almost equal to each other1 and much larger than the remaining wi for i ∈ [2n] \ [k].
We call it a top-k instance for any k ≤ 2n. It turns out that restricting our attention only to the
top-k instances is without loss of generality for the Max-Sample algorithm. We prove next that
Max-Sample is a p

1+p approximation to the prophet on any top-k instance for each k ∈ [2n] using
similar approach to what we did in Section 3 for the top-1 instances, but with a more elaborate
case analysis.

1E.g., w1 = w2 + ε = . . . = wk + (k − 1)ε, for some negligibly small ε > 0.
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Theorem 4.1. Max-Sample algorithm is a p
1+p -approximation to the prophet for any value of

p ∈ (0, 1].

Proof. We analyse Max-Sample in the card model and first show that restricting our attention only
to the top-k instances is without loss of generality.

Claim 4.1. Suppose a rank-based ALG (i.e., ALG only uses comparisons “>,<” between variables
and samples) is an α < 1 approximation to the prophet on any top-k instance in the card model for
each k ≥ 1. Then ALG is an α-approximation to the prophet on every instance.

Proof. The fact that ALG is an α-approximation to the prophet on a top-k instance means that

Prv,r [ALG(v, r) gets wi for an i ∈ [k]] ≥ α ·Prv [∃i ∈ [k] vσi = wi] (8)

for this instance. As ALG is an ordinal algorithm the same guarantee holds for any instance that
is not necessarily a top-k. Expected performance of the ALG can be written as

E [ALG] =
2n∑
k=1

wk ·Pr [ALG gets wk] =

2n∑
k=1

wk ·
(
Pr [ALG gets wi, i ∈ [k]]

−Pr [ALG gets wi, i ∈ [k − 1]]
)
=

2n∑
k=1

Pr [ALG gets wi, i ∈ [k]] · (wk − wk+1)

≥ α ·
2n∑
k=1

Pr [∃i ∈ [k] vσi = wi] · (wk − wk+1) = α · E [Prophet] ,

where Pr[ALG gets wi, i ∈ [0]] = w2n+1 = 0; we used (8) to get the inequality.

To conclude the proof of Theorem 4.1, we only need to show that Max-Sample is a p
1+p -

approximation to the prophet on a top-k instance for each k ∈ [2n]. Section 3 already gives
the desired result for k = 1. For k ≥ 2 we consider the sequence of cards (σi)

k
i=1 with the top k

values. There are two cases: 1) there is a pair of wi, wj on the same card (σi = σj), or 2) all (σi)
k
i=1

are different.

Case 1. ∃ σj = σi, i, j ∈ [k]. Let us consider the first time two top values appear on the same
card, i.e., the smallest i ≤ k with σi = σj for a j < i. Notice that the prophet can get one of
the top-i values (either wi or wj), i.e., Pr[∃j ∈ [i] vσj = wj ] = 1. On the other hand, for the
Max-Sample it is only harder to stop at one of the top-i values. Hence, we can assume without
loss of generality that k = i and that σj = σk is the only two top-k values on the same card. We
distinguish three cases based on the index j.

Case 1.a. k = 2. Then σ1 = σ2, i.e., w1 and w2 are on the same card. Then consider the event
E0 that (vσ1 = w1, sσ1 = w2, rσ1 = 1), then Max-Sample succeeds with probability 2p

1+p . On the
other hand, if rσ1 = 0 (sample sσ1 ∈ {w1, w2} is not revealed) we can use the same events (Ei)i≥1

from Section 3 (count starts from w3 instead of w2) to guarantee that Max-Sample stops at w1 or
w2 (whichever is at the bottom of Cσ1). Overall, the events (Ei)i≥0 give us the desired guarantee

Pr [alg. wins] ≥ p

2
· 2p

1 + p
+ (1− p) ·

∑
i≥1

Pr [Ei] ≥
p2

1 + p
+ (1− p)

p

1 + p
=

p

1 + p
.
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Case 1.b. k > 2 and σj = σk ̸= σ1. The Max-Sample wins in the event E0 : (vσ1 = w1, rσk
= 1).

On the other hand, when (vσ1 = w1, rσk
= 0), we can use the same events (Ei)i≥1 as in Section 3

with a small modification that wj , wk and their respective card Cσj are removed from the sequence
(wi)

2n
i=1 to guarantee the win of Max-Sample. Indeed, the card Cσj may only cause the algorithm

to stop early at wj or wk, which is a win for the algorithm. We have

Pr [alg. wins] ≥ Pr [E0] +
1

2
(1− p) ·

∑
i≥1

Pr [Ei] ≥
p

2
+

1− p

2

p

1 + p
=

p

1 + p
.

Case 1.c. k > 2 and σk = σ1. We consider first what happens with the card Cσ1 . First, let us
consider what happens when (sσ1 = wk, rσ1 = 0). The Max-Sample wins if at least one of the top
values wi, i ∈ [2, k] is revealed as a sample (sσi = wi, rσi = 1). We define this event EI as

EI
def
=={(sσ1 = wk, rσ1 = 0), ∃ 1 < i < k (sσi = wi, rσi = 1)}

Pr [EI ] =
1− p

2
·
(
1−

(
1− p

2

)k−2
)

(9)

Next, let us consider what happens when (vσ1 = w1, sσ1 = wk, rσ1 = 1). The algorithm is guaran-
teed to win when one of the wi for 1 < i < k appears at the bottom, or as a revealed sample. The
Max-Sample also wins when all of the wi for 1 < i < k appear as a hidden samples and Max-Sample
decides not to skip w1 when it reaches sσ1 = wk. Formally, we define these two events EII , EIII as

EII
def
== {(sσ1 = wk, rσ1 = 1), ∃ 1 < i < k (vσi = wi or sσi = wi, rσi = 1)}

EIII
def
== {(sσ1 = wk, rσ1 = 1), ∀ 1 < i < k (sσi = wi, rσi = 0),ALG takes w1}

Pr [EII ⊔ EIII ] =
p

2
·

(
1−

(
1− p

2

)k−2

+

(
1− p

2

)k−2

· 2p

1 + p

)
(10)

Finally, let us consider what happens when wk is at the bottom of the card Cσ1 and w1 is not
revealed as a sample (vσ1 = wk, rσ1 = 0). We would like to treat wk as w1 from Section 3 and
construct events that guarantee Max-Sample to stop at wk. The main problem is that if any of
the wi for i ∈ [2, k − 1] appears as a revealed sample, then the algorithm will never stop at wk.
To avoid this issue we will add the condition that no wi for i ∈ [2, k − 1] is revealed as a sample
(note that if wi appears at the bottom of Cσi , it can only help Max-Sample to win). We use the
events {Eℓ}ℓ≥1 from Section 3 with a modification that wk plays the role of w1 and all w2, . . . , wk−1

are ignored or equivalently treated as very small numbers (i.e., (wi)i≥2 in Section 3 correspond to
(wi)i≥k+1 in our instance, and w1 in Section 3 corresponds to wk here)2. Notice that if a card with
wi, i ∈ [2, k − 1] is used in an event Eℓ, then the other value wj , j ≥ k + 1 on the card Cσi must be
a sample (sσj = wj , vσj = wi). I.e., we do not need to worry that wi is revealed as a sample. Thus
for each event Eℓ the algorithm wins in the event

E ′
ℓ

def
== {(vσ1 = wk, rσ1 = 0) ∧ Eℓ ∧ {∀1 < i < k vσi = wi ∨ (sσi = wi, rσi = 0)}}

Pr
[
E ′
ℓ

]
≥ 1− p

2
·
(
1− p

2

)k−2
·Pr [Eℓ] . (11)

2We can assume that once wi is set to 0 for 1 < i < k, it is small enough to not appear in the Eℓ. Indeed, we can
add a few dummy cards with both sides having negligibly small numbers in the beginning of the sequence that do
not affect performance of Max-Sample, but still bigger than wi ← 0.

8



When we combine the events defined by (9), (10),(11) we get

Pr [alg. wins] ≥ Pr

EI ⊔ EII ⊔ EIII ⊔
⊔
ℓ≥1

E ′
ℓ

 ≥ 1− p

2
·
(
1−

(
1− p

2

)k−2
)
+

p

2
·

(
1−

(
1− p

2

)k−2

+

(
1− p

2

)k−2

· 2p

1 + p

)
+

1− p

2

(
1− p

2

)k−2
· p

1 + p

=
1− p

2
·
(
1− 1

1 + p

(
1− p

2

)k−2
)
+

p

2
·

(
1− 1− p

1 + p

(
1− p

2

)k−2
)

k=3
>

1− p

2
·
(
1− 1

1 + p

(
1− p

2

))
+

p

2
·
(
1− 1− p

1 + p

)
=

p

1 + p
,

where to get the last inequality we used that the previous expression is minimized for k = 3 (recall

that k > 2) and also that
(
1−p
2

)k−2
< 1. This concludes the proof for the case 1 as we have

Pr[alg. wins] ≥ p
1+p in each of the sub-cases 1.a, 1.b, and 1.c.

Case 2 k ≥ 2 and ∀ 1 ≤ i < j ≤ k σi ̸= σj . The main difficulty in this case is that the value of
the prophet Pr[∃ j ∈ [i] vσj = wj ] = 1 − 1

2k
, which depends on k. On the positive side, there are

no sub-cases here unlike case 1. We consider first what happens when at least one of the wi, i ∈ [k]
is revealed as a sample. Let j ∈ [k] be the first wj with (sσj = wj , rσj = 1). For each j ≥ 2,
Max-Sample algorithm wins when at least one of the wi, i < j appears at the bottom of its card
Cσi . Formally, we define these events (E∗

j )
k
j≥2 as

E∗
j

def
==

{
(sσj = wj , rσj = 1),

∀ i < j (vσi = wi ∨ rσi = 0)
not ∀ i < j (sσi = wi ∧ rσi = 0)

}
Pr
[
E∗
j

]
=
p

2
·

((
1− p

2

)j−1
−
(
1− p

2

)j−1
)

(12)

Next, consider the event E ′ that none of wi, i ∈ [k] is revealed as a sample and at least one of them
is at the bottom of its card Cσi . In this case, we need to consider other (wi)i≥k+1 to guarantee
the win of Max-Sample. To this end, we would like to use the events (Eℓ)ℓ≥1 from Section 3 with
the following modification: all w1, . . . , wk are ignored, i.e., (wi)i≥2 from Section 3 correspond to
(wi)i≥k+1 in our instance. If event Eℓ does not specify position of any of the cards Cσ1 , . . . , Cσk

,
then Max-Sample wins in the event E ′

ℓ defined as:

E ′
ℓ

def
==

{
Eℓ ,

∀ i ∈ [k] (vσi = wi ∨ rσi = 0)
not ∀ i ∈ [k] (sσi = wi ∧ rσi = 0)

}
Pr
[
E ′
ℓ

]
=

((
1− p

2

)k
−
(
1− p

2

)k
)

·Pr [Eℓ] (13)

Now, if Eℓ specifies the position of any of the cards Cσ1 , . . . , Cσk
, then let us consider the first

time j ≥ k + 1 when σj = σi, for an i ∈ [k]. Note that in this case wi must be at the bottom of
Cσj (vσi = wi). We can treat wi as w1 in the event Eℓ from Section 3 and ignore the remaining
wt, t ∈ [k] \ {i}. Then for every card Cσt , t ∈ [k] that is specified in Eℓ, we have vσt = wt.
We immediately get ¬∀ i ∈ [k] (sσi = wi ∧ rσi = 0) and specifically for the card Cσt we get
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(vσt = wt ∨ rσt = 0). We still need to check that vσt = wt ∨ rσt = 0 for the cards not specified
in Eℓ. Thus, for the event E ′

ℓ formally defined in (13) we get

Pr
[
E ′
ℓ

]
≥
(
1− p

2

)k−1
·Pr [Eℓ] ≥

((
1− p

2

)k
−
(
1− p

2

)k
)

·Pr [Eℓ] (14)

Finally, we combine the events {E∗
j }kj≥2 and {E ′

ℓ}ℓ≥1 and use (12),(14) to get

Pr [alg. wins] ≥ Pr

 k⊔
j=2

E∗
j ⊔

⊔
ℓ≥1

E ′
ℓ

 ≥ p

2
·
k−1∑
j=1

((
1− p

2

)j
−
(
1− p

2

)j
)
+

((
1− p

2

)k
−
(
1− p

2

)k
)

·
∑
ℓ≥1

Pr [Eℓ] ≥
p

2
·
k−1∑
j=1

((
1− p

2

)j
−
(
1− p

2

)j
)
+

((
1− p

2

)k
−
(
1− p

2

)k
)

· p

1 + p
=

p

2

(
1− p

2

) 1−
(
1− p

2

)k−1

p/2

− p

2

(
1− p

2

) 1−
(
1−p
2

)k−1

1− 1−p
2

+

((
1− p

2

)k
−
(
1− p

2

)k
)

p

1 + p
=

1− p

2
− 1

1 + p

(
1− p

2

)k
− p(1− p)

2(1 + p)
=

1

1 + p

(
1−

(
1− p

2

)k)
(15)

We are left to verify that the right hand side of (15) is at least p
1+p · Prophet = p

1+p ·
(
1− 1

2k

)
.

This is equivalent to showing that f(p)
def
== 1−

(
1− p

2

)k ≥ g(p)
def
== p · (1− 1

2k
). Now, observe that

f(0) = g(0), f(1) = g(1), and f ′(p) − g′(p) = k
2

(
1− p

2

)k−1 − 1 + 1
2k

is a decreasing function in p
that is positive at p = 0 (recall that k ≥ 2). These three conditions imply that f(p)− g(p) ≥ 0 for
any p ∈ [0, 1].

5 Matching Lower Bound

We give in this section a matching lower bound of p
1+p . Interestingly, our construction has the

property that the maximum value among all n values together with all n samples (revealed or not)
is almost surely much larger than the rest 2n − 1 numbers, that is the upper bound of p

1+p from
section 3 is tight.

Our construction is as follows for any fixed constant p ∈ (0, 1].

Example 5.1. Set ε = o(p) > 0. Let the number of variables n = Θ
(

1
ε2

)
. Define the distribution

F0 = {v = 0 w.p. 1} and distributions Fi
def
== {v = 1

εi
w.p. ε, v = 0 w.p. 1− ε} for all i ∈ [n]. We

construct the following mixture of n instances {Ii}ni=1.

i-th instance Ii : ∀j ≤ i Dj = Fj ,∀j > i Dj = F0 Pr [Ii] =
εi−1∑n−1
j=0 ε

j

The next two claims describe an optimal online algorithm ALG for this instance. Let i∗
def
==

argmaxi X̂i (i
∗ = 1 if all X̂i = 0).
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Claim 5.1. There is an optimal ALG that does not take any Xi with i < i∗.

Proof. If ALG stops at any i < i∗, then its reward Xi is equal to or smaller than 1
εi∗−1 . On the

other hand, ALG could wait until i∗ and get a reward of at least 1
εi∗

with probability ε, since the

distribution Di∗ = Fi. This gives at least as large expected reward of 1
εi∗

· ε as taking Xi.

Claim 5.2. The ALG that takes the first non zero Xi for i ≥ i∗ is optimal.

Proof. First, we may assume that ALG does not stop before i∗ by Claim 5.1. Also we can assume
that ALG skips any Xi = 0. Note that the revealed samples up until i∗ give no information about
the variables after i∗. Thus ALG should only consider zero samples after i∗, which we denote by a
vector sR. Then for each j ≥ i∗

PrIi [sR = 0 | Ii = Ij ] = (1− ε)f(j), where f(j)
def
== |R ∩ {i∗, i∗ + 1, . . . , j}|.

Using Bayes rule and the law of total probability we can get

PrIi [Ii = Ij | i ≥ i∗, sR = 0] =
wj∑
i≥i∗ wi

, where wj
def
== εj−i∗ · (1− ε)f(j) (16)

We will prove that an optimal ALG should always take Xt = 1
εt for any t ≥ i∗ and any sR by

backward induction on t. The base of induction for t = n is trivial. We prove induction step for
a t < n assuming that the induction hypothesis holds for all t′ : t < t′ ≤ n. Assume towards
a contradiction that an optimal algorithm ALG′ does not take Xt = 1

εt , then by the induction
hypothesis ALG′ must wait until the next variable Xt′ > 0 and stop. Next, we will show that the
expected reward in this case is strictly smaller than 1

εt – the reward ALG would have by stopping
at Xt.

E
[
ALG′] = n∑

j>t

1

εj
·Pr [∀t < i < j Xi = 0, Xj > 0] ·PrIi [i ≥ j | i ≥ t, sR = 0]

=

n∑
j>t

ε · (1− ε)j−t−1

εj
·
∑n

i≥j wi∑n
i≥twi

<

n∑
j>t

ε · (1− ε)j−t−1

εj
· εj−t <

1

εt−1

∞∑
i=0

(1− ε)i

=
1

εt
= E [ALG] , (17)

where to get the first inequality we observe that εj−twt ≥ wj , ε
j−twt+1 ≥ wj+1, . . ., ε

j−twn−j+t ≥
wn by formula (16) and thus εj−t ·

∑n
i≥twi >

∑n
i≥j wi; in the second inequality we simply extended

the range of summation from i = n− t− 1 to infinity. The strict inequality (17) shows that ALG′

cannot be optimal, and, therefore, an optimal ALG has to stop at Xt, which concludes the proof.

Now, we can compare the optimal online algorithm described by Claim 5.2 with the prophet.

Theorem 5.1. The competitive ratio of any online algorithm with respect to the prophet is at least
p

1+p for the Example 5.1.

Proof. First, we get the following lower bound on the expected reward of the prophet

Prophet ≥
n∑

ℓ=1

PrIi [Ii = Iℓ] ·Pr

[
Xℓ =

1

εℓ

]
· 1

εℓ
=

n∑
ℓ=1

εℓ−1 · ε · 1
εℓ∑n−1

i=0 εi
= n− o(n).

11



In what follows we get an upper bound on the expected reward ALG of the optimal online algorithm.
Let us assume that the realized instance is Ii = Iℓ. We first observe that the total contribution
from Xj with 1 ≤ j < ℓ is not more than

ℓ−1∑
j=1

Pr [Xj > 0] · 1

εj
= ε ·

ℓ−1∑
j=1

ε−j = O

(
1

εℓ−2

)
. (18)

As we will see later this turns out to be a negligibly small amount. Next we get an upper bound
on the probability that ALG stops at Xℓ when Ii = Iℓ and Xℓ > 0.

Pr [ALG takes Xℓ | Ii = Iℓ, Xℓ > 0] = Pr [∀1 ≤ i < ℓ Xi = 0]+

ℓ−1∑
j=1

Pr [∀j < i < ℓ Xi = 0, Xj > 0] ·Pr
[
∃j < i ≤ ℓ (X̂i > 0, ri = 1)

]

= (1− ε)ℓ−1 +

ℓ−2∑
i=0

ε · (1− ε)i · (1− (1− pε)i+1) (19)

We further estimate the term Aℓ
def
==

∑ℓ−2
i=0 ε · (1− ε)i · (1− (1− pε)i+1) in (19). We give an upper

bound on Aℓ by analysing a simple Markov chain M that corresponds to this summation. Markov
chain M has 4 states {S, I,End,Win}; the random walk starts in the S state, and from there we
can go either to Win with probability pε, or to I with the remaining probability 1− pε; from state
I we can either go back to S with probability 1 − ε, or go to End with remaining probability ε;
finally, both states Win and End are terminal states, i.e., once the random walk gets in one of them,
it stays there forever. The Win state represents that ALG successfully reaches Xℓ and End state
represents that ALG stops at an earlier random variable. Observe that

Pr [reach Win] = 1−Pr [reach End] = 1−
∞∑
ℓ=0

ε(1− ε)ℓ(1− pε)ℓ+1 =

∞∑
ℓ=0

ε(1− ε)ℓ −
∞∑
ℓ=0

ε(1− ε)ℓ(1− pε)ℓ+1 =
∞∑
ℓ=0

ε(1− ε)ℓ(1− (1− pε)ℓ+1) ≥ Aℓ

On the other hand, we have a simple recurrent equation for Pr[reach Win] = pε + (1 − pε) · (1 −
ε) ·Pr[reach Win], which gives us

p+ o(p)

1 + p
=

p

1 + p− εp
= Pr [reach Win] ≥ Aℓ. (20)

For the other term Bℓ
def
== (1− ε)ℓ−1 in (19) we will use that n = Ω( 1

ε2
) is rather large and thus for

almost all ℓ the term Bℓ is negligibly small. Now we can combine the bounds (18),(19), and (20)
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together to get the lower bound on expected reward ALG of the optimal online algorithm.

ALG ≤
n∑

ℓ=1

PrIi [Ii = Iℓ] ·
[
Pr[Xℓ > 0]

εℓ
·Pr [ take Xℓ | Ii = Iℓ, Xℓ > 0]

+O

(
1

εℓ−2

)]
=

n∑
ℓ=1

εℓ−1∑n−1
i=0 εi

·
[
ε

εℓ
·
(
Aℓ + (1− ε)ℓ−1

)
+O

(
1

εℓ−2

)]
≤

n∑
ℓ=1

εℓ−1

[
Aℓ

εℓ−1
+

(1− ε)ℓ−1

εℓ−1
+O

(
1

εℓ−2

)]
< n ·An +O(nε) +

∞∑
ℓ=1

(1− ε)ℓ−1

≤ np+ o(np)

1 + p
+O(nε) +

1

ε
= n ·

(
p

1 + p
+ o(1)

)
.

Combining this upper bound on ALG with a lower bound on the prophet we get the desired bound
ALG ≤ (1 + o(1)) p

1+pProphet.
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and sample-based prophet inequalities. In SODA, pages 2066–2081. SIAM, 2020.
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