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Abstract. In set system auctions, a single buyer needs to purchase services from
multiple competing providers, and the set of providers has a combinatorial struc-
ture; a popular example is provided by shortest path auctions [1, 7]. In [3] it has
been observed that if such an auction is conducted using first-price rules, then,
counterintuitively, the buyer’s payment may go down if some of the sellers are
prohibited from participating in the auction. This reduction in payments has been
termed “the cost of cheap labor”. In this paper, we demonstrate that the buyer
can attain further savings by setting lower bounds on sellers’ bids. Our model
is a refinement of the original model of [3]: indeed, the latter can be obtained
from the former by requiring these lower bounds to take values in {0, +∞}. We
provide upper and lower bounds on the reduction in the buyer’s payments in our
model for various set systems, such as minimum spanning tree auctions, bipartite
matching auctions, single path and k-path auctions, vertex cover auctions, and
dominating set auctions. In particular, we illustrate the power of the new model
by showing that for vertex cover auctions, in our model the buyer’s savings can
be linear, whereas in the original model of [3] no savings can be achieved.

1 Introduction

Combinatorial procurement auctions, or set system auctions, play an important role in
electronic commerce [13]. In such auctions, a buyer (center) needs to purchase products
or services from a number of competing sellers, and the subsets of sellers that satisfy the
buyer’s requirements can be characterized combinatorially. A well-known example is
provided by path auctions [1, 7], where the buyer’s aim is to obtain a path in a network
whose edges are owned by selfish agents; other examples include minimum spanning
tree auctions [14], bipartite matching auctions [3], and vertex cover auctions [2]. An
important research goal in this setting is the minimization of the buyer’s total payment.
While most of the work on this topic focuses on dominant-strategy incentive compat-
ible mechanisms (e.g., [1, 14, 9, 7, 5]), the properties of Nash equilibria of first-price
auctions have recently received a lot of attention as well [8, 6, 3].

An interesting — and, perhaps, counterintuitive — property of set system auctions
is that the buyer can lower her total payment by prohibiting some of the agents from
participating in the auction. In other words, reducing competition in the market can
benefit the buyer. This has been observed for VCG mechanisms by Elkind [5] in the
context of path auctions (see also [4]). Later, Chen and Karlin [3] discovered that this
can also happen in first-price auctions for a variety of set systems. They labeled this



phenomenon “the cost of cheap labor”, and provided tight bounds on the cost of cheap
labor in several set systems.

Prohibiting an agent from participating in an auction can be interpreted as requiring
him to raise his bid to +∞. The goal of this paper is to explore a more general ap-
proach, namely, allowing the center to place arbitrary lower bounds on all sellers’ bids,
in a manner reminiscent of using reserve prices in combinatorial auctions. Clearly, this
technique is more flexible than simply deleting agents, and hence the resulting savings,
which we term “the refined cost of cheap labor”, may be even higher than the cost of
cheap labor, as defined in [3]. In this paper, we study the benefits of this approach by
quantifying the refined cost of cheap labor for a number of well-known set systems.

We start by providing general upper and lower bounds on the refined cost of cheap
labor for arbitrary set systems (Section 3). We then consider several classes of set sys-
tems for which we can show that the refined cost of cheap labor and the cost of cheap
labor coincide. These include matroids and (single) paths considered in [3], as well as
a richer set system not considered in [3], namely, k-paths. For k-path auctions, we sig-
nificantly extend the techniques of [3] to provide tight bounds on the (refined) cost of
cheap labor.

We then move on to vertex cover set systems. In these set systems, deleting an agent
creates a monopoly, and hence the cost of cheap labor is exactly 1. On the other hand,
artificially inflating the agents’ bids may prove to be very profitable for the buyer: we
show that there exist vertex cover auctions for which the refined cost of cheap labor is
linear in the number of agents, matching the general upper bound of Section 3. Finally,
we consider set systems that are based on dominating sets and perfect bipartite match-
ings. For such set systems, we show that both the cost of cheap labor and the refined
cost of cheap labor can be quite large, and also that these two quantities can differ by a
large factor. These set systems illustrate that setting lower bounds on the sellers’ bids is
a very powerful — yet simple and practically applicable — technique. Thus, we believe
that the refined cost of cheap labor is an important characteristic of a set system auction,
which deserves further study.

2 Preliminaries

A set system is a pair (E,F), where E is the ground set and F ⊆ 2E is a collection of
feasible subsets of E. Throughout the paper, we only consider set systems with |E| <
+∞ and set n = |E|. The set F can be listed explicitly, or defined combinatorially. In
this paper, we consider the following set systems:

– spanning trees: the setE is the set of all edges of a given graphG and F consists of
all sets S ⊆ E that contain a spanning tree. This is a special case of a more general
matroid set system [12], in which the set E is the ground set of a given matroid M ,
and the set F is the collection of all subsets of 2E that contain a base of M .

– perfect bipartite matchings: the set E is the set of all edges of a given bipartite
graph G and F consists of all sets S ⊆ E that contain a perfect bipartite matching.

– k-paths: the set E is the set of all edges of a given network G with a source s and
a sink t, and F consists of all sets S ⊆ E that contain k edge-disjoint s-t paths.



– vertex covers: the set E is the set of all vertices of a given graph G, and F consists
of all sets S ⊆ E that contain a vertex cover of G.

– dominating sets: the set E is the set of all vertices of a given graph G, and F
consists of all sets S ⊆ E that contain a dominating set of G, i.e., for each vertex
v /∈ S, there is u ∈ S such that there is an edge between u and v.

Observe that all set systems listed above are upwards closed, i.e., S ∈ F implies
S′ ∈ F for any S′ ⊇ S. A set system is said to be monopoly-free if ∩S∈FS = ∅.
Throughout this paper, we restrict ourselves to upwards closed, monopoly-free set sys-
tems.

In a set system auction for a set system (E,F), each e ∈ E is owned by a selfish
agent, and there exists a center (auctioneer) who wants to purchase a feasible solution,
i.e., an element of F . Each agent e ∈ E has a cost ce ≥ 0, which is incurred if this ele-
ment is used in the solution purchased by the center. We will refer to a triple (E,F , c),
where c = (ce)e∈E as a market. For any subset S ⊆ E, we write c(S) to denote∑

e∈S ce.
Throughout the paper, we assume that the sale is conducted by means of a first-price

auction: each agent e announces his bid be, indicating how much he wants to be paid
for the use of his element, the auctioneer selects the cheapest feasible set breaking ties
in an arbitrary (but deterministic) way, and all agents in the winning set are paid their
bid. Thus, the payoff of a winning agent e with bid be is be − ce, whereas the payoff
of any losing agent is 0. The agents are selfish, i.e., they aim to maximize their payoff.
Therefore, we are interested in Nash equilibria (NE) of such auctions, i.e., vectors of
bids b = (be)e∈E such that no agent e can increase his payoff by bidding b′e 6= be as
long as all other agents bid according to b. We restrict ourselves to equilibria in which
no agent bids below their cost, i.e., be ≥ ce for all e ∈ E.

Unfortunately, as shown in [8], for some markets and some tie-breaking rules, first-
price auctions may have no NE in pure strategies. However, they do have ε-Nash equi-
libria in pure strategies for any ε > 0, i.e., a bid vector such that no agent can unilat-
erally change his bid to increase the payoff by more than ε. Moreover, for any market
(E,F , c), there exists a tie-breaking rule (e.g., one that favors the feasible set with the
smallest cost) that ensures the existence of a pure NE. Thus, in what follows, we will
ignore the issues of existence of pure NE, and use the term ”Nash equilibrium” to refer
to a bid vector that is a pure NE of a first-price auction for a given market under some
tie-breaking rule, or, equivalently, can be obtained as a limit of ε-NE for that market as
ε→ 0.

Following the approach of [3], we will focus on NE of set system auctions that are
buyer-optimal, i.e., minimize the center’s total payment. For a given market (E,F , c),
we denote the center’s total payment in such a NE with the smallest total payment by
ν(E,F , c).

This quantity is similar to—but different from—the quantity ν0 that is used in [9]
as a benchmark to measure the frugality of dominant-strategy set system auctions. In-
deed, the latter can be interpreted as the minimal total payment in a buyer-optimal
efficient NE of a first-price auction (i.e., a NE in which the winning set S satisfies
S ∈ argminS∈Fc(S)), in which, in addition, all losing agents bid their cost.



3 Refined Cost of Cheap Labor: General Bounds

In this section, we introduce our new measure of the cost of cheap labor, which we will
call the refined cost of cheap labor, and compare it to the notion of the cheap labor cost
introduced in [3].

The following definition of cheap labor cost is adapted from [3].

Definition 1. Given a market (E,F , c), its cheap labor cost δ1(E,F , c) is defined as
follows:

δ1(E,F , c) = max
S⊆E

ν(E,F , c)
ν(S,F [S], c[S])

,

where F [S] = {S′ ∈ F | S′ ⊆ S}, and c[S] = (ce)e∈S . The cheap labor cost of a set
system (E,F) is defined as δ1(E,F) = supc δ1(E,F , c).

Informally, δ1(E,F) measures how much the center can save by removing some
of the agents from the system. Alternatively, the center’s actions can be interpreted
as setting the costs of some agents to +∞ (or some appropriately large number). The
notion of refined cheap labor cost, which we will now introduce, allows the center more
flexibility, permitting him to raise the cost of any agent e ∈ E to any value between its
cost ce and +∞.

Definition 2. Given a market (E,F , c), its refined cheap labor cost δ2(E,F , c) is de-
fined as follows:

δ2(E,F , c) = sup
c′�c

ν(E,F , c)
ν(E,F , c′)

.

where c′ � c means that c′e ≥ ce for all e ∈ E. The refined cheap labor cost of a set
system (E,F) is defined as δ2(E,F) = supc δ2(E,F , c).

As argued above, Definition 1 can be obtained from Definition 2 by requiring that
c′e ∈ {ce,+∞} for all e ∈ E. The following theorem provides some simple bounds on
δ1 and δ2.

Theorem 1. Fix a market (E,F , c), and let S be a cheapest feasible solution inF with
respect to c. Then the following inequalities hold:

1 ≤ δ1(E,F , c) ≤ δ2(E,F , c) ≤ |S|.

In what follows, we present upper and lower bounds on δ2 for specific set systems.

4 Spanning Trees and Other Matroids

For any spanning tree set system, artificially inflating the agents’ costs cannot lower the
center’s payments, i.e., δ1 = δ2 = 1 (where δ1 = 1 is shown in [3]). In fact, this result
holds for the more general case of matroid set systems. We refer the readers to [12] for
a formal definition of a matroid.

Theorem 2. For any matroid marketM = (E,F , c) we have δ2(E,F , c) = 1.



5 Paths and k-Paths

Throughout this section, for a given network G = (V,E) with a source s and a sink t,
we denote by Fk the collection of sets of edges that contain k edge-disjoint paths from
s to t.

For k-paths set systems, it turns out that the optimal cost reduction can be achieved
by simply deleting edges in E, i.e., δ1 = δ2. Furthermore, δ2 = δ1 ≤ k + 1 for any
network, and this bound is tight, i.e. for any k there is a k-path set system (E,Fk) with
δ1(E,Fk) = δ2(E,Fk) = k + 1. This generalizes the result of [3], which proves this
claim for k = 1.

Theorem 3. For any network G = (V,E) with a source s and a sink t, and any cost
vector c, we have δ2(E,Fk, c) = δ1(E,Fk, c).

We also give a tight bound on the cost of cheap labor (and hence, by Theorem 3, a
tight bound on the refined cost of cheap labor) in any k-paths set system.

Theorem 4. For any network G = (V,E) with a source s and a sink t, and any cost
vector c, we have δ1(E,Fk, c) ≤ k + 1, and this bound is tight.

6 Vertex Covers

In this section, we consider vertex cover auctions. In these auctions, as well as in the
auctions considered in Section 7, the sellers are the vertices. Therefore, in these two
sections we depart from the standard graph-theoretic notation, and use E to denote the
set of vertices of a graph G, and H to denote the set of edges of G. Also, we denote
by F the collection of all sets of vertices that contain a vertex cover (respectively, a
dominating set) for G.

The vertex cover set systems demonstrate that δ1 and δ2 can be very different: for
any such set system δ1 = 1, whereas δ2 can be linear in |E|.

Proposition 1. For any graph G = (E,H) and any costs c, we have δ1(E,F , c) = 1.

In contrast, we will now show that there is a graph G = (E,H) with |E| = n such
that the corresponding set system (E,F) satisfies δ2(E,F) = Ω(n).

Proposition 2. There exists a graph G = (E,H) and a cost vector c that satisfy
δ2(E,F , c) ≥ n−3

2 , where n = |E|.

Proof. Consider a graph G obtained from complete graph Kn−2 by adding two new
vertices u and u′ and connecting them to two adjacent vertices v and v′ of Kn−2,
respectively (see Fig. 1). In addition, consider a cost vector c given by cv = cv′ = 1,
and ce = 0 for e 6= v, v′.

For the cost vector c, it can be seen that the buyer-optimal NE b is bu = bu′ = 0,
be = 1 for e 6= u, u′. Thus, ν(E,F , c) = n − 3. On the other hand, consider a cost
vector c′ � c given by c′v = c′v′ = c′u = c′u′ = 1 and ce = 0 for e 6= v, v′, u, u′. It
is easy to see that for this cost vector, the buyer-optimal NE b′ satisfies b′ = c′ and
the winning set consists of all vertices of Kn−2. Hence, ν(E,F , c′) = 2, and we have
δ2(E,F , c) ≥ n−3

2 .
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7 Dominating Sets

For dominating sets, note that deleting an agent that corresponds to a vertex e is not
equivalent to deleting the vertex e itself from the graph: e still needs to be dominated,
even though it cannot be a member of a feasible set.

For dominating sets, δ1 does not necessarily equal δ2. Furthermore, δ1 and δ2 can be
as large as Ω(

√
n). We will now present two examples to illustrate this. Both examples

are obtained by a modification of the construction used in the last section.

Definition 3. Given a complete graph Kn, n ≥ 3, let K ′n be the graph obtained from
Kn by replacing each of its edges (vi, vj) by a pair of edges (vi, wij), (wij , vj). Define
W = {wij}i,j∈{1,...,n} and V = {vi}i∈{1,...,n}.

Proposition 3. There exists a graph G = (E,H) and a cost vector c that satisfy
δ1(E,F , c) = 1 and δ2(E,F , c) = Ω(

√
n).

The graph G is constructed from K ′n by selecting two adjacent vertices v, v′ ∈ V
and adding three new vertices t, u, u′ and n + 2 new edges (u, v), (u′, v′), (t, v)v∈V

(see Fig. 3 [left]). For cost vector c, we set ce = n2 for e ∈ W , cv = cv′ = 1,
cu = cu′ = ct = 0, and ce = 0 for e ∈ V \ {v, v′}.

Proposition 4. There is a graph G = (E,H) such that δ1(E,F) = Ω(
√
n) and

δ2(E,F) = Ω(
√
n).

The graph G is constructed from K ′n by selecting a vertex v ∈ V and adding three
new vertices t, u, u′ and n + 3 new edges (u, v), (u′, v), (u, u′), (t, v)v∈V (see Fig. 3
[right]). For cost vector c, we set ce = n2 for e ∈ W , cv = 1, cu = cu′ = ct = 0, and
ce = 0 for e ∈ V \ {v}.

8 Perfect Bipartite Matchings

Perfect bipartite matching systems have a similar flavor to dominating set systems—δ2
can be very different from δ1, and both of them can be very large. For perfect matching
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Fig. 3. Dominating Set (graph G [left] and G′ [right] with n = 5).

in bipartite graphs, [3] shows that there is a graph G such that the corresponding set
system satisfies δ1(E,F) = Ω(n). As any bipartite matching in a graph with n edges
has size O(n), by Theorem 1 we have the following claim.

Proposition 5. There is a graphG = (V,E) such that δ1(E,F) = Θ(n) and δ2(E,F) =
Θ(n), where n = |E|.

Proposition 5 shows that in the worst case δ1 and δ2 coincide. However, they can also
differ by a linear factor.

Proposition 6. There is a graph G = (V,E) such that δ1(E,F) = 1 and δ2(E,F) =
Ω(n).

Proof. Consider the graph shown in Fig. 2. For any cost vector c, since we cannot delete
any edge without creating a monopoly, we have δ1(E,F , c) = 1.

On the other hand, to see that δ2(E,F) = Ω(n), consider a cost vector c where
c(ui,u) = 1 for i = 3, . . . , n, and ce = 0 for any other edge e ∈ E. In any buyer-
optimal Nash equilibrium b, we have to set b(ui,vi) = 1 for i = 3, . . . , n, which implies
that ν(E,F , c) = n − 2. Consider another cost vector c′ � c, where c(ui,u) = 1 for
i = 1, . . . , n and ce = 0 for any other edge e ∈ E. It can be seen that ν(E,F , c′) = 1,
and thus δ2(E,F , c) ≥ n− 2.

9 Conclusions and Future Work

We have introduced the notion of refined cost of cheap labor for set system auctions,
and analyzed it for several classes of set systems. A number of questions suggest them-



selves for further study. First, in this paper we largely ignored computational issues
related to our problem, such as, e.g., computing the refined cost of cheap labor for a
given set system, or identifying an optimal or close-to-optimal modified cost vector c′.
We believe that this is a fruitful topic that deserves to be investigated further. Another
promising research direction is bounding the ratio between ν and ν0, i.e., the additional
cost of requiring the winning set to be optimal with respect to the true costs; this quan-
tity can be seen as “the cost of efficiency”. In particular, it would be interesting to see
if the latter can be bounded in terms of the (refined) cost of cheap labor.
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