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ABSTRACT
A large body of work in Computer Science and Operations Research

study online algorithms for stochastic resource allocation problems.

The most common assumption is that the online requests have

randomly generated i.i.d. types. This assumption is well justified

for static markets and/or relatively short time periods. We con-

sider dynamic markets, whose states evolve as a random walk in a

market-specific Markov Chain. This is a newmodel that generalizes

previous i.i.d. settings. We identify important parameters of the

Markov chain that is crucial for obtaining good approximation guar-

antees to the expected value of the optimal offline algorithm which

knows realizations of all requests in advance. We focus on a stylized

single-resource setting and: (i) generalize the well-known Prophet

Inequality from the optimal stopping theory (single-unit setting)

to Markov Chain setting; (ii) in multi-unit setting, design a simple

algorithm that is asymptotically optimal under mild assumptions

on the underlying Markov chain.
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1 INTRODUCTION
There has been a lot of interest in online resource allocation prob-

lems from computer science and operation research communities
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largely motivated by their applications in domains such as the

multi-billion dollar industry of Internet advertising, flight and hotel

bookings, and network revenue management. The earlier work in

computer science such as well-known Adwords problem introduced

by Mehta et al. [Mehta et al. 2007] was focused on the traditional

approach to describe the online algorithm’s uncertainty about the

future via worst-case competitive analysis. However, most of the

recent papers (see, e.g., [Devanur et al. 2019]) study stochastic set-
tings, where it is assumed that the input stream is drawn i.i.d. from

a prior distribution and the objective is taken in expectation over

this distribution.

The resource allocation framework can be informally described

as follows. A stream of requests arrive online; upon arrival, the

type of the request is realized and the algorithm needs to decide

whether to serve the request or not. The request type specifies

the amounts of each resource it would consume and the request’s

value (e.g., how much revenue it generates), if the request is served.

Each resource has a certain allowed budget/capacity that the al-

gorithm may use. It is commonly assumed that the request types

are drawn i.i.d. from a known prior distribution 𝐹 . The goal is to

maximize the total value collected by the online algorithm while

satisfying the budget constraints. The expected value of the online

algorithm is usually compared against the expected value of the

offline optimum benchmark. This problem is often treated with

the help of linear program (LP) relaxations, primal-dual LPs, and

the online linear programming framework (OLP) (see, e.g., [Li and

Ye 2022]). The typical results are quite optimistic: they give near

optimal performance guarantees of 1 − 𝑜 (1), under the practically
motivated large budgets assumption, i.e., the assumption that each

request may only consume negligibly small amount of a resource

relative to the corresponding budget.

While the i.i.d. assumption on the request types greatly simpli-

fies the problem’s theoretical analysis and allows to use powerful

LP machinery, it is a rather strong assumption. Indeed, by making it

we assume that the environment does not change over time, which

https://doi.org/10.1145/3543507.3583428
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in practice is often violated: e.g., the types of search requests di-

rected to advertising platforms might exhibit significant statistical

difference based on external factors such as the weather, apartment

prices, recent political events, and the general state of the market

and economy. There are more realistic models describing the evolu-

tion of a market state via transitions in a Markov chain. A famous

example is the Markov chain describing evolution of a stock market

by three states: “bear market”, “bull market”, and “stagnant market”

states.

Figure 1: market example

This kind of Markov models is precisely what we propose to

use in the online resource allocation framework. Specifically, we

propose a new model where the online requests are sampled from

a distribution 𝐹𝑠 which depends on the market state 𝑠 , that changes
over time according to a random walk in a market specific Markov

chain. Our main focus is on a stylized model with only one resource.

Of course it is a simplification of the actual problem, but all theoret-

ical works in this area consider somewhat simplified abstractions

of the problem. Fortunately, this model already provides interesting

insights about the power and limitations of the new framework

and lets us identify right assumptions on the Markov chains that al-

low interesting positive results. Moreover, even this stylized model

allows to capture other important stochastic online problems such

as the well-known prophet inequality from the optimal stopping

theory literature and its generalization to 𝑘-unit prophet inequality.

1.1 Our Results
We start by exploring the optimal online algorithm in Section 3 and

derive a few interesting structural results for the multi-resource

and single-resource cases of the Markov chain model. Note that

our model can be interpreted as a special case of Markov Decision

Processes (MDP) and one can find the optimal policy in any MDP

by dynamic programming. However, even for a small number of

resources the respective MDP has a large number of states and the

optimal online policy described by the dynamic program would be

too complex to run in practice. Note that simpler and more robust

algorithms (like Samuel-Cahn’s single-threshold algorithm [Samuel-

Cahn 1984]) in a more basic setting of prophet inequality (PI) are

often preferred over the optimal online algorithm described by a

simple dynamic program. Thus, in this section, we are interested

in structural properties of the optimal solution with the hope that

these properties might indicate the existence of simpler and more

robust online algorithms with good performance guarantees. We

prove that the expected reward function at each state of the Markov

chain is an increasing concave function of the remaining resources

(in multi-resource case we allow the algorithm to serve requests

fractionally, in the single-resource case the result holds for {0, 1}
decisions). As a consequence, in the single-resource setting, the

optimal policy can be interpreted as a decreasing-threshold-based

algorithm analogous to the optimal online policy for the prophet

inequality.

In the following Sections 4 and 5, we focus on competitive anal-

ysis and try to find online algorithms with good guarantees on

competitive ratios against the optimal offline solution. We focus on

the stylized model with a single resource and identify the right as-

sumptions on the Markov chain model that would allow interesting

theoretical results.

In Section 4, we study the single-unit setting when the algorithm

may only serve one request. We generalize the classic prophet

inequality from optimal stopping theory to the Markov chain model

by allowing the algorithm to select the starting state and achieve

tight competitive ratio of
1

2
. Without the extra assumption, no

constant approximation result is attainable. This assumption is

justified when the Markov chain has a small hitting time compared

to the total number of time steps. Indeed, if the expected number of

steps needed to travel from any given state to another is relatively

small compared to the time frame, our algorithm is able to wait

until the random walk visits the desired starting state.

We extend our results to the multi-unit setting when the algo-

rithm can serve 𝑘 requests in Section 5. We design simple online

algorithms with 1−𝑜 (1) competitive ratio when the resource budget

and the total number of steps are sufficiently large (the algorithm

and its analysis can be extended to multi-resource case). Our re-

sult generalizes the multi-unit prophet inequality and the previous

results on online resource allocation with i.i.d. requests.

1.2 Related Work
Online resource allocation is closely related to the online matching

literature. [Karp et al. 1990] proposed the online bipartite matching

problem and designed an optimal 1 − 1/𝑒 competitive algorithm.

Later, their result was generalized to vertex-weighted setting [Ag-

garwal et al. 2011]. These settings can be viewed as online resource

allocation problems for which we only have 1 copy of each re-

source and each online request can be served by a subset of the

resources. The AdWords problem [Mehta et al. 2007] and online

𝑏-matching [Kalyanasundaram and Pruhs 2000] are further gener-

alizations of the model in which each offline vertex can be matched

multiple times. These settings are typically studied under the large

budgets assumption which we mentioned in the introduction. All

the above settings are originally studied in the adversarial frame-

work in which no stochastic information about the online requests

is known. In contrast to the 1 − 𝑜 (1) competitive ratios achieved

in the stochastic settings (e.g., [Devanur and Hayes 2009; Devanur

et al. 2019; Li and Ye 2022]), a constant fraction of loss is unavoidable

in the adversarial setting.
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The AdWords problem is studied in the known i.i.d. model, e.g.,

in [Alaei et al. 2012; Devanur and Hayes 2009; Devanur et al. 2012],

and in the unknown i.i.d. model, e.g., in [Agrawal and Devanur

2015; Devanur et al. 2019; Gupta and Molinaro 2016; Kesselheim

et al. 2018; Li and Ye 2022]. The later model only requires that

the online requests are drawn from an i.i.d. distribution which is

not known in advance to the online algorithm. In other words,

the online algorithm needs to learn the distribution and to make

online decisions simultaneously. We leave it as an interesting future

direction to incorporate the learning part into our Markov chain

model. For instance, how should we design algorithms if theMarkov

chain is unknown to the algorithm beforehand? Going beyond

the i.i.d. model, [Devanur et al. 2019] proposed the adversarial

stochastic input (ASI) model to allow non-i.i.d. online requests.

They provide results for both the known and unknown distribution

models. Our model is more general than the ASI model in the

known distribution setting. In the unknown distribution setting,

they studied a relaxed offline optimum in order to achieve non-

trivial theoretical results and hence are not comparable to ours.

Another closely related line of work concerns the prophet in-

equality. It was first proposed by [Krengel and Sucheston 1977]

in the context of the optimal stopping theory. In our context, the

optimal stopping problem can be modeled as a Markov chain given

by a path of length 𝑇 with a single-resource and unit capacity

constraint. The random walk starts at the head of the path and

makes exactly 𝑇 transitions along the path. They [Krengel and

Sucheston 1977] showed that the optimal online algorithm is 1/2
competitive with respect to the expected value of the optimal offline

algorithm. Later [Samuel-Cahn 1984] showed that a much simpler

single-threshold algorithm can achieve the same tight competitive

ratio. More recently, the topic of prophet inequality has received

much attention in the algorithmic mechanism design literature due

to its close connection to the posted-price mechanisms [Hajiaghayi

et al. 2007]. They extended the prophet inequality to the 𝑘-unit

setting and proved a 1−𝑂
(√︃

log𝑘

𝑘

)
competitive ratio. Prior to that,

[Kennedy 1985, 1987; Kertz 1986] have also studied multi-choice

optimal stopping problems but used different benchmarks. Later,

Alaei [Alaei 2014] studied the problem in a more general setting

that applies to the multi-unit prophet inequality, and achieved an

improved tight ratio of 1 − 1√
𝑘+3

. Alaei et al. [Alaei et al. 2012]

generalize 𝑘-unit prophet inequality to bipartite graphs that model

ad allocation scenarios, which is also related to the online resource

allocation literature. More recent work on prophet inequalities

focuses on complex combinatorial settings, e.g., [Kleinberg and

Weinberg 2019] consider a feasibility constraint on the feasible set

of online requests given by the base of a matroid, or intersection of

𝑘 matroids.

2 PRELIMINARIES
2.1 Markov Chains
Consider a discrete Markov chain with a set 𝑁 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} of
𝑛 states. We use𝑀 to denote the transition matrix of the Markov

chain, where 𝑀𝑖 𝑗 = Pr [𝑠𝑖 → 𝑠 𝑗 ] (𝑖-th column and 𝑗-th row) con-

tains the transition probability from state 𝑠𝑖 to 𝑠 𝑗 . We use𝑊 (𝑠) =

(𝑠 (𝑡))𝑇
𝑡=1

to denote a random walk of length 𝑇 starting from the

state 𝑠 (1) = 𝑠 .

Ergodic Markov Chains. In Section 5, we focus on ergodic Markov

chains, i.e., those Markov chains in which it is possible to go from

every state to every state. We use w = (𝑤𝑖 )𝑛𝑖=1 to denote its sta-

tionary distribution, i.e., 𝑀 · w = w. We denote by Rt(𝑠𝑖 ) = 1

𝑤𝑖

the expected first return time to each state 𝑠𝑖 . The hitting time

Ht = max𝑠𝑖 ,𝑠 𝑗 ∈𝑁 E𝑊 (𝑠𝑖 ) [min𝑡 {𝑠 (𝑡) = 𝑠 𝑗 }] is the maximum ex-

pected time for the Markov chain to travel between any two states.

2.2 Online Resource Allocation
Next, we present our general model for online resource allocation.

The market state 𝑠 (𝑡) evolves according to a given Markov chain𝑀 .

Each state 𝑠 is associated with an a priori known type distribution

𝐹𝑠 . At time 𝑡 , a type 𝜃 (𝑡) is drawn from 𝐹𝑠 (𝑡 ) . Every type 𝜃 is given

by its value 𝑣 (𝜃 ) and a cost vector of𝑚 resources which consumes

c(𝜃 ) = (𝑐𝑖 (𝜃 ))𝑚𝑖=1 ∈ R
𝑚
. The algorithm A observes the state 𝑠 (𝑡)

and realized type 𝜃 (𝑡) and decides whether to serve a given type or

not indicated by the binary decision variable 𝑥 (𝑡) ∈ {0, 1}; it gets
the value 𝑣 (𝑡) = 𝑣 (𝜃 (𝑡)) ·𝑥 (𝑡) and consumes resources 𝑥 (𝑡) ·c(𝜃 (𝑡)).
The algorithm A must satisfy capacity constraints:

∑𝑇
𝑡=1 𝑥 (𝑡) ·

𝑐𝑖 (𝜃 (𝑡)) ≤ 𝐶𝑖 for each 𝑖 ∈ [𝑚] given by the vector C = (𝐶𝑖 )𝑚𝑖=1.
That is, there are𝑚 types of resources and we have capacity 𝐶𝑖 for

each of the resource 𝑖 . The algorithm aims to maximize the total

value

∑𝑇
𝑡=1 𝑣 (𝑡) =

∑𝑇
𝑡=1 𝑣 (𝜃 (𝑡)) · 𝑥 (𝑡).

Remark 1. Our process, given by the Markov chain𝑀 with a set of
finitely supported distributions (𝐹𝑠 )𝑠∈𝑁 , can be equivalently simu-
lated by another Markov chain𝑀 with deterministic types in each
state. Indeed, one can split each state 𝑠 ∈ 𝑁 of 𝑀 into𝑚 new states
with respective types {𝜃1𝑠 , . . . , 𝜃𝑚𝑠 } and let transition probabilities

from state 𝜃𝑖𝑎 to 𝜃 𝑗
𝑏
be 𝑀

𝜃𝑖𝑎,𝜃
𝑗

𝑏

def

== Pr𝑀 [𝑎 → 𝑏] · Pr𝐹𝑏 [𝜃
𝑗

𝑏
]. While

such a transformation helps to simplify the analysis of our Markov
chain model, it also blows up the state space, turning a typically small
market model into a huge Markov chain.

2.3 Stylized Model and Examples
Most of our results focus on a stylized single-resource setting (𝑚 =

1) with uniform costs, i.e., 𝑐 (𝜃 ) = 1 for any request types 𝜃 . In other

words, an algorithm can serve at most 𝐶 requests and the only

randomness is from the value of each online request. Our model

generalizes the classical prophet inequality setting (PI) from optimal

stopping theory and also the most commonly made assumption of

i.i.d. request types.

Prophet inequality. Consider a Markov chain𝑀𝑃𝐼
represent-

ing a path, i.e., the transition probabilities Pr [𝑠𝑖 → 𝑠𝑖+1] = 1

for all 𝑖 ∈ [𝑛 − 1], Pr [𝑠𝑛 → 𝑠𝑛] = 1. This is equivalent to

the PI with a known arrival order. The capacity constraint

can be 𝐶 = 1 for the classic PI, or it can be 𝐶 = 𝑘 for the

multi-unit PI (generalization of PI).

I.i.d. requests. Consider a Markov chain with a single state

𝑠0 and the transition probability Pr [𝑠0 → 𝑠0] = 1. This is

equivalent to the setting when all online requests are drawn

i.i.d..
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3 OPTIMAL ONLINE ALGORITHM
In this section we describe the optimal online algorithm and dis-

cuss its structural properties. To simplify exposition and notations,

we assume that all states in the original Markov chain 𝑀 have

deterministic types and will omit 𝜃 in the notations.

Our online problem is a special case of Markov Decision Process

(MDP) which in general can be solved by dynamic programming.

Specifically for our MDP, the following dynamic programming

equation (DPE) on the optimal expected reward 𝑅𝑠 (r, 𝑡) for the
given time step 𝑡 ≤ 𝑇 , vector of remaining resources r, and a

starting state 𝑠 ∈ 𝑁 is as follows.

∀𝑠 ∈ 𝑁 𝑅𝑠 (r, 𝑡) = max

(
𝑣𝑠 + R(r − c(𝑠), 𝑡 + 1)⊤ ·𝑀 · e𝑠 ,

R(r, 𝑡 + 1)⊤ ·𝑀 · e𝑠
)
, where R(r, 𝑡) =

(
𝑅𝑠 (r, 𝑡)

)
𝑠∈𝑁

(1)

The vector e𝑠 ∈ R𝑛 in the above program is an elementary ba-

sis vector corresponding to the state 𝑠; also 𝑅𝑠 (r, 𝑡)
def

== −∞ if any

coordinate of r is negative. This MDP is hard to solve even in a

single-resource case. Indeed, solving the MDP for a simple path

Markov chain with deterministic values and costs is equivalent to

the knapsack problem. For multiple resources, our setting general-

izes the online bipartite matching studied in [Papadimitriou et al.

2021], which was shown to be APX hard. We present the following

nice properties of the MDP which suggest the plausibility of obtain-

ing a PTAS in the single-resource setting. We leave the question of

finding such a PTAS for future research.

3.1 Single-resource case
Here, we consider the case of the single-resource, i.e., when the

consumption vectors c(𝑠) ∈ R1 for all states 𝑠 ∈ 𝑁 . We also assume

that all consumption values are normalized
1
as 𝑐 (𝑠) = 1. Then

equation (1) can be rewritten for the remaining supply 𝑘 ∈ N0 as

∀𝑠 ∈ 𝑁 𝑅𝑠 (𝑘, 𝑡) = max

(
𝑣𝑠 + R(𝑘 − 1, 𝑡 + 1)⊤ ·𝑀 · e𝑠 ,

R(𝑘, 𝑡 + 1)⊤ ·𝑀 · e𝑠
)
, where R(𝑘, 𝑡) =

(
𝑅𝑠 (𝑘, 𝑡)

)
𝑠∈𝑁

. (2)

In the settings where the values 𝑣𝑠 ∼ 𝐹𝑠 are random, it is easy to see

from the DPE (2) that the optimal online policy is a threshold policy

given by 𝝉 (𝑘, 𝑡) = (𝜏𝑠 (𝑘, 𝑡))𝑠∈𝑁 , i.e., the online algorithm serves a

request in the state 𝑠 at time 𝑡 and when the remaining amount of

resources is 𝑘 if and only if the realized value 𝑣𝑠 ≥ 𝜏𝑠 (𝑘, 𝑡).
We observe nice structural properties on the values of 𝑅𝑠 (𝑘, 𝑡).

Claim 1. For each state 𝑠 ∈ 𝑁 and time 𝑡 ≤ 𝑇 , the expected reward
𝑅𝑠 (𝑘, 𝑡) is increasing concave function in the amount of resource 𝑘 .

Proof. The proof proceeds by backward induction on 𝑡 . Specifi-

cally, we show that 𝑅𝑠 (𝑘 +1, 𝑡) −𝑅𝑠 (𝑘, 𝑡) is non negative decreasing

function in 𝑘 ∈ N0 for each 𝑡 ≤ 𝑇 and 𝑠 ∈ 𝑁 . In the base case 𝑡 = 𝑇 ,

we have

R(𝑘,𝑇 ) = 0, for 𝑘 = 0; R(𝑘,𝑇 ) = v, for 𝑘 ≥ 1,

where v = (𝑣𝑠 )𝑠∈𝑁 . Hence, 𝑅𝑠 (𝑘 + 1, 𝑡) − 𝑅𝑠 (𝑘, 𝑡) ≥ 0 is decreasing

in 𝑘 for each 𝑠 ∈ 𝑁 and 𝑡 = 𝑇 . Next, we assume that our claim holds

for 𝑡 = 𝑡0 + 1 and we will show that it holds for 𝑡 = 𝑡0. To simplify

1
This is not restrictive assumption in the setting with a single resource when all

consumption values 𝑐 (𝑠 ) are small relative to the capacity constraint𝐶 .

notations we let (𝑄𝑠 (𝑘))𝑠∈𝑁 = Q(𝑘) def== 𝑀⊤ · R(𝑘, 𝑡0 + 1), for each
𝑘 ∈ N0. That allows us to rewrite DPE (2) as follows.

𝑅𝑠 (𝑘, 𝑡0) =
{
𝑣𝑠 +𝑄𝑠 (𝑘 − 1), 𝑄𝑠 (𝑘) −𝑄𝑠 (𝑘 − 1) < 𝑣𝑠
𝑄𝑠 (𝑘), 𝑄𝑠 (𝑘) −𝑄𝑠 (𝑘 − 1) ≥ 𝑣𝑠

(3)

We note that𝑄𝑠 (𝑘) is a linear non negative combination of𝑅𝑠 (𝑘, 𝑡0+
1) for 𝑠 ∈ 𝑁 and all 𝑘 ∈ N0. Thus, by the induction hypothesis𝑄𝑠 (·)
is an increasing concave function and𝑔(𝑘) def== 𝑄𝑠 (𝑘)−𝑄𝑠 (𝑘−1) ≥ 0

is decreasing in 𝑘 for every state 𝑠 ∈ 𝑁 . Now we can plot the

discrete derivativeℎ(𝑘) def== 𝑅𝑠 (𝑘+1, 𝑡0)−𝑅𝑠 (𝑘, 𝑡0) of𝑅𝑠 (𝑘, 𝑡0), where
𝑅𝑠 (𝑘, 𝑡0) is given by equation (3), as a function of 𝑘 . The function

ℎ(𝑘) is similar to 𝑔(𝑘). Indeed, as 𝑔(𝑘) is monotonically decreasing

in 𝑘 there is a threshold value 𝜏 ∈ N0 such that 𝑅𝑠 (𝑘, 𝑡0) = 𝑄𝑠 (𝑘)
for all 𝑘 < 𝜏 and 𝑅𝑠 (𝑘, 𝑡0) = 𝑄𝑠 (𝑘 − 1) + 𝑣𝑠 for all 𝑘 ≥ 𝜏 . It is

easy to verify that ℎ(𝑘) is non negative and decreasing in 𝑘 , which

concludes the proof. □

This allows us to get structural property on the threshold vector

𝝉 (𝑘, 𝑡), which has the following explicit form that follows from

equation (2).

𝝉 (𝑘, 𝑡) = 𝑀⊤ ·
(
R(𝑘, 𝑡 + 1) − R(𝑘 − 1, 𝑡 + 1)

)
. (4)

Claim 2. For each state 𝑠 ∈ 𝑁 and time 𝑡 ≤ 𝑇 , the threshold 𝜏𝑠 (𝑘, 𝑡)
is decreasing in 𝑘 .

Proof. By claim 1 the discrete derivative 𝑅𝑠 (𝑘, 𝑡 + 1) − 𝑅𝑠 (𝑘 −
1, 𝑡 + 1) is a decreasing function in 𝑘 . I.e., R(𝑘, 𝑡 + 1) −R(𝑘 − 1, 𝑡 + 1)
in (4) is coordinate-wise smaller than R(𝑘′, 𝑡 +1) −R(𝑘′−1, 𝑡 +1) for
any 𝑘′ > 𝑘 . Now, since all entries in matrix𝑀⊤ are non negative,

the resulting vector 𝝉 (𝑘, 𝑡) must be coordinate-wise larger than the

vector 𝝉 (𝑘′, 𝑡). □

We note that understanding the dependency of 𝝉 (𝑘, 𝑡) on the

number of time steps 𝑡 is less important than dependency on the

amount of the resource. Indeed, one may consider a model with

geometric stopping time (i.e., when stopping time 𝑇 is a random

variable with geometric distribution), or more generally consider

Markov chains with an absorbing state and infinite time horizon

𝑇 = ∞. In the latter case the optimal policy does not depend on the

time, i.e., threshold function 𝜏𝑠 (𝑘) is only a function of the amount

of remaining resources and not the time 𝑡 when each state 𝑠 is

visited.

We note that when vector of available resources r (or capacities
C) is multi-dimensional, then even the task of finding the optimal

offline solution is equivalent to solving general integer linear pro-

gram. On the other hand, the common assumption for the online

resource allocation problems is large budgets, i.e., settings where

fractional online algorithm is a close approximation to the online al-

gorithm that has to make integral (accept/reject) decisions. Thus, in

the multi-resource setting we study fractional online algorithms that
can serve any fraction 𝑥𝑠 ∈ [0, 1] of a request at state 𝑠 . The optimal

fractional online algorithm is described by the following DPE: for

all states 𝑠 ∈ 𝑁 and time steps 𝑡 (the vector R(r, 𝑡) = (𝑅𝑠 (r, 𝑡))𝑠∈𝑁 )

𝑅𝑠 (r, 𝑡) = max

𝑥∈[0,1]

(
𝑣𝑠 · 𝑥 + R(r − 𝑥 · c(𝑠), 𝑡 + 1)⊤ ·𝑀 · e𝑠

)
, (5)
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where c(𝑠) is the consumption vector for state 𝑠 . It turns out that, our

claim 1 extends tomulti-resource case (see full proof in Appendix A).

Claim 3. For each time 𝑡 ≤ 𝑇 , and each starting state 𝑠 ∈ 𝑁 the
expected reward 𝑅𝑠 (r, 𝑡) is concave function in r.

Proof. The proof proceeds by backward induction on 𝑡 . In the

base case for 𝑡 = 𝑇 ,

𝑅𝑠 (r,𝑇 ) = max

𝑥∈[0,1]

(
𝑣𝑠 · 𝑥

��� r ⪰ 𝑥 · c(𝑠)
)
, (6)

where r ⪰ 𝑥 · c(𝑠) means that vector r is coordinate-wise larger
than vector 𝑥 · c(𝑠). We need to check that for any 𝛼 ∈ [0, 1] and
r1, r2 ⪰ 0

𝛼 · 𝑅𝑠 (r1,𝑇 ) + (1 − 𝛼) · 𝑅𝑠 (r2,𝑇 ) ≤ 𝑅𝑠 (𝛼 · r1 + (1 − 𝛼) · r2,𝑇 ). (7)
Let 𝑥1, 𝑥2 ∈ [0, 1] be respective values of 𝑥 at which 𝑅𝑠 (r1,𝑇 )
and 𝑅𝑠 (r2,𝑇 ) attain their maximum value in (6). That means that

r1 ⪰ 𝑥1 ·c(𝑠) and r2 ⪰ 𝑥2 ·c(𝑠). Then 𝑥
def

== 𝛼 ·𝑥1+ (1−𝛼) ·𝑥2 ∈ [0, 1]
must be feasible for 𝛼 · r1 + (1−𝛼)r2, i.e., 𝛼 · r1 + (1−𝛼)r2 ⪰ 𝑥 · c(𝑠).
Therefore, 𝑅𝑠 (𝛼 ·r1+(1−𝛼) ·r2,𝑇 ) ≥ 𝑥 ·𝑣𝑠 = 𝑣𝑠 · (𝛼 ·𝑥1+(1−𝛼) ·𝑥2) =
𝛼 · 𝑅𝑠 (r1,𝑇 ) + (1 − 𝛼) · 𝑅𝑠 (r2,𝑇 ) .

In the induction step, we assume that 𝑅𝑠 (r, 𝑡0 + 1) is concave
and we need to show that 𝑅𝑠 (r, 𝑡0) is also a concave function in

r. We first observe that the function 𝑄 (r) def== R(r, 𝑡0 + 1)⊤ ·𝑀 · e𝑠
is concave in r, since it is a non negative linear combination of

concave functions. We again need to check (7) for any 𝛼 ∈ [0, 1]
and r1, r2 ⪰ 0, where 𝑇 ← 𝑡0. Let 𝑥1, 𝑥2 ∈ [0, 1] be respective

values of 𝑥 at which 𝑅𝑠 (r1, 𝑡0) and 𝑅𝑠 (r2, 𝑡0) attain their maximum

value. We set 𝑥
def

== 𝛼 · 𝑥1 + (1 − 𝛼) · 𝑥2 ∈ [0, 1] in the equation (6)

for 𝑅𝑠 (𝛼 · r1 + (1 − 𝛼) · r2, 𝑡0) and get that its value is at least

𝑣𝑠 ·
(
𝛼𝑥1 + (1 − 𝛼)𝑥2

)
+𝑄

(
𝛼r1 + (1 − 𝛼)r2 − 𝑥 · c(𝑠)

)
≥

𝛼 ·
(
𝑥1 · 𝑣𝑠 +𝑄

(
r1 −𝑥1 · c(𝑠)

) )
+ (1−𝛼) ·

(
𝑥2 · 𝑣𝑠 +𝑄

(
r2 −𝑥2 · c(𝑠)

) )
= 𝛼 · 𝑅𝑠 (r1, 𝑡0) + (1 − 𝛼) · 𝑅𝑠 (r2, 𝑡0),

where we used concavity of 𝑄 (r) in the inequality. This concludes

the proof of induction step. □

4 PROPHET INEQUALITY
In this section we consider a generalization of the well known

Prophet Inequality (PI) from the optimal stopping theory to our

Markov Chain setting. In the classic PI there are 𝑛 boxes with

given reward distributions (𝐹𝑖 )𝑛𝑖=1; an online algorithm opens these

boxes one by one: at the 𝑖-th step, the algorithm opens the 𝑖-th box

and observes the reward 𝑣𝑖 ∼ 𝐹𝑖 ; it can either take 𝑣𝑖 , in which

case the game terminates, or it can irrevocably discard the reward

and continue to the next box. The goal is to maximize the online

algorithm’s expected reward. The prophet inequality refers to the

competitive ratio of 2 between the expected reward of the best

online algorithm
2
and the expected reward of the offline algorithm

( the “prophet”), who can see all realized values in advance and

would simply stop at the box with the maximum value. The PI can

be viewed as a special case of online resource allocation: there is

2
In fact, a much simpler online algorithm that stops at the first value 𝑣𝑖 exceeding a

uniform threshold 𝜏 achieves the same competitive ratio of 2.

only a single resource with capacity 𝐶 = 1, taking the reward from

any box 𝑖 would consume one unit of this resource. This is also the

case in our Markov Chain setting: only a single resource𝑚 = 1 of

capacity𝐶 = 1, and by serving any state 𝑠𝑖 we consume 𝑟 = 1 of the

resource. The classic PI setting corresponds to the Markov Chain

𝑀PI
introduced in the previous section; the algorithm makes𝑇 = 𝑛

steps starting from the initial state of 𝑠 (0) = 𝑠1. We would like

to have a constant approximation guarantee analogous to PI, for

Markov Chains𝑀 beyond the path example. However, as the next

simple example below illustrates, this is not possible in general.

Counter-Example. The Markov chain𝑀𝑐
has 𝑛 + 1 states {𝑠𝑖 }𝑛𝑖=0:

state 𝑠0 is absorbing (𝑀
𝑐
0,0

= 1); from each other state 𝑠𝑖 , 𝑖 ∈ [𝑛 − 1]
we can either go to the next state 𝑠𝑖+1 with a small probability

𝑀𝑐
𝑖,𝑖+1 = 𝜀 > 0, or go to 𝑠0 with probability 𝑀𝑐

𝑖,0
= 1 − 𝜀, also

𝑀𝑐
𝑛,0

= 1 for the last state 𝑠𝑛 . All states have deterministic values:
𝑣𝑖 =

1

𝜀𝑖−1
for 𝑖 ∈ [𝑛]; 𝑣0 = 0 for the state 𝑠0. The random walk starts

at 𝑠1 and proceeds for 𝑇 = 𝑛 steps.

The offline optimum would take the reward from the last state

𝑠𝑡 , 𝑡 ∈ [𝑛] before the random walk jumps to the absorbing state.

The expected value of the offline optimum is
1

𝜀𝑛−1
· 𝜀𝑛−1 +∑𝑛−2𝑡=0

1

𝜀𝑡
·

𝜀𝑡 (1−𝜀) = 1+(1−𝜀) (𝑛−1) . The online algorithm, on the other hand,

must choose upfront the state 𝑠𝑖 , 𝑖 ∈ [𝑛], until which it will wait

and take the reward. For each 𝑖 ∈ [𝑛], this strategy has expected

reward of
1

𝜀𝑖−1
· 𝜀𝑖−1 = 1. I.e., the competitive ratio of any online

algorithm is not better than 𝑛.

Figure 2: counter-example

The competitive ratio of 𝑛 is discouraging. Let us take a closer

look at the aforementioned example to findwhatmakes it so difficult

for the online algorithm. Notice that we do not use the random-

ness of the distributions 𝐹𝑖 , but instead rely on the randomness of

the transitions in𝑀𝑐
. The same holds true more generally for any

Markov Chain model 𝑀 with a set of finitely supported distribu-

tions {𝐹𝑖 }𝑖∈[𝑛] : any such process can be equivalently modeled as a

random walk in a larger Markov chain with deterministic values

at every state. Next, notice that each interaction between a pair of

states (𝑠𝑖 , 𝑠𝑖+1) in 𝑀𝑐
is similar to the standard 2-approximation

lower bound example in PI
3
. However, by getting to the state 𝑠𝑖+1

in𝑀𝑐
, we increase our chances to get to the future high value states

𝑠 𝑗 , 𝑗 ≥ 𝑖 + 2. In other words, the significance of reaching a certain

state 𝑠𝑖 may be much higher than obtaining a given value from a

distribution 𝐹𝑖 in PI.

3
The tight PI example has two boxes with distributions: 𝐹1 – Pr [𝑣 = 1] = 1; 𝐹2 –

Pr [𝑣 = 1

𝜀
] = 𝜀, Pr [𝑣 = 0] = 1 − 𝜀 . Transition from 𝑠𝑖 to 𝑠𝑖+1 state captures the

uncertainty of the distribution 𝐹2 in the PI setting.
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The latter behavior may only occur in random walks that have

only small probability of reaching certain states in the Markov

Chain. Such types of Markov Chains are perhaps not the best choice

for modeling long term market evolution. It is also not surprising

that an online algorithm may not perform well in comparison to

the offline algorithm in markets with high unpredictability for a

short time decision making processes.

Hence, to avoid the negative results it is reasonable to add an

extra assumption that our random walk has a good chance to

visit each state 𝑠𝑖 of the Markov Chain. I.e., that the number of

steps 𝑇 in our random walk is at least Ω(Ht), where Ht(𝑀) is
the the hitting time of 𝑀 which is formally defined as Ht(𝑀) def==

max𝑠𝑖 ,𝑠 𝑗 ∈[𝑛] E𝑊 (𝑠𝑖 ) [min𝑡 {𝑠 (𝑡) = 𝑠 𝑗 }] (the maximal expected num-

ber of steps needed to travel from any given state 𝑠𝑖 to any other

given state 𝑠 𝑗 in𝑀). This assumption allows the online algorithm

to sacrifice a relatively small number of steps and get to any desired

state 𝑠 in𝑀 . I.e., by making this assumption, we get the power to

choose the starting point of our random walk. In the following we

obtain the analogue of the classic PI for Markov Chains with the

free choice for the starting point. Specifically, we let the online algo-

rithm to pick a starting position 𝑠 (1) = 𝑠 and compare its expected

performance to the offline algorithm that can also pick the starting

state 𝑠 (1). Hence, our benchmark is

prophet = max

𝑠∈𝑁
E

𝑊 ∼𝑀 (𝑠 )

[
E
v∼F

[
max

𝑡 ∈[𝑇 ]
{𝑣𝑠 (𝑡 ) }

] ]
, (8)

where a random walk𝑊 = (𝑠 (𝑡))𝑇
𝑡=1

is generated from Markov

chain𝑀 , starting from 𝑠 (1) = 𝑠 . Similar to the classic PI we shall use

a uniform threshold algorithm with the threshold 𝜏 = 1

2
· prophet,

i.e., the online algorithm that stops at the any state 𝑠 with the

realized value 𝑣𝑠 ≥ 𝜏 .

Theorem 4. There is a starting state and a uniform threshold online
algorithm with expected reward of at least 0.5 · prophet.

Proof. First, we would like to specify the starting state 𝑠∗ of
our online algorithm A. The most obvious choice of 𝑠∗ would be

the same state 𝑠 as in (8) that maximizes prophet. Interestingly,
while it is possible to show a constant approximation to prophet
for such 𝑠∗, there are Markov Chains where the approximation

ratio to prophet will be strictly worse than 0.5. Instead we use the

following starting state 𝑠∗:

𝑠∗ = argmax

𝑠
E

𝑊 ∼𝑀 (𝑠 )

[
E
v∼F

[
max

𝑡 ∈[𝑇 ]

{(
𝑣𝑠 (𝑡 ) − 𝜏

)+}]]
, (9)

where 𝑊 = (𝑠 (𝑡))𝑇
𝑡=1

, 𝑠 (1) = 𝑠 and (𝑥)+ def

== max{0, 𝑥} for any
𝑥 ∈ R. Let us fix the distribution of random walks𝑊 ∗ ∼ 𝑀 (𝑠∗),
𝑊 ∗ = (𝑠 (𝑡))𝑇

𝑡=1
, 𝑠 (1) = 𝑠∗. Let 𝑄 be the probability that our al-

gorithm takes a value 𝑣𝑠 (𝑡 ) ≥ 𝜏 on the random walk𝑊 ∗, and let

{𝑞𝑠,𝑡 }𝑠∈𝑁,𝑡 ∈[𝑇 ] be the probabilities that our algorithm reaches state

𝑠 at time 𝑡 .{
𝑄 = Pr𝑊 ∗,v [∃𝑡 ∈ [𝑇 ] 𝑣𝑠 (𝑡 ) ≥ 𝜏]
𝑞𝑠,𝑡 = Pr𝑊 ∗,v [𝑠 (𝑡) = 𝑠 ∧ ∀ℓ < 𝑡 𝑣𝑠 (ℓ ) < 𝜏], ∀𝑠 ∈ 𝑁, 𝑡 ∈ [𝑇 ]

We can express the expected reward of online algorithm A(𝑠∗)
as a combination of two parts: revenue (a guaranteed reward of 𝜏 ,

whenever algorithm stops at 𝑣𝑠 (𝑡 ) ≥ 𝜏), and surplus ((𝑣𝑠 (𝑡 ) − 𝜏)+).

A(𝑠∗) = 𝑄 ·𝜏+
∑︁
𝑡 ∈[𝑇 ],
𝑠∈𝑁

𝑞𝑠,𝑡 ·Pr [𝑣𝑠 ≥ 𝜏] ·E
𝑣𝑠

[
(𝑣𝑠 − 𝜏)+

��� 𝑣𝑠 ≥ 𝜏

]
, (10)

where the term𝑄 ·𝜏 corresponds to revenue part and in the surplus

term the probabilities {𝑞𝑠,𝑡 ·Pr [𝑣𝑠 ≥ 𝜏]}𝑠,𝑡 represent disjoint events
that A(𝑠∗) has stopped at a specific step 𝑡 in a given state 𝑠 . The

latter also means that

𝑄 =
∑︁

𝑡 ∈[𝑇 ],𝑠∈𝑁
𝑞𝑠,𝑡 · Pr [𝑣𝑠 ≥ 𝜏] . (11)

Now, consider the expectation in (9) for the starting state 𝑠∗. Let
𝑠𝑜 be the starting state of the prophet and𝑊 𝑜 ∼ 𝑀 (𝑠𝑜 ) be the

corresponding random walk. First, we have

𝜏 = E
𝑊 𝑜 ,v

[
max

𝑡 ∈[𝑇 ]
𝑣𝑠 (𝑡 )

]
− 𝜏 ≤ E

𝑊 𝑜 ,v

[
max

𝑡 ∈[𝑇 ]

{(
𝑣𝑠 (𝑡 ) − 𝜏

)+}]
≤ E
𝑊 ∗,v

[
max

𝑡 ∈[𝑇 ]

{(
𝑣𝑠 (𝑡 ) − 𝜏

)+}]
def

== Sur∗, (12)

where the first inequality holds by linearity of expectation and since

max 𝑣𝑠 (𝑡 ) − 𝜏 ≤ max(𝑣𝑠 (𝑡 ) − 𝜏)+; the second inequality holds as 𝑠∗

maximizes expression in (9). Second, we have

Sur∗ =
∑︁
𝑡,𝑠

𝑞𝑠,𝑡 Pr [𝑣𝑠 ≥ 𝜏] E
𝑊𝑇 −𝑡

𝑠 ,v

[
max

ℓ∈[𝑇−𝑡 ]
(𝑣𝑠 (ℓ ) − 𝜏)+

��� 𝑣𝑠 ≥ 𝜏

]
≤

∑︁
𝑡,𝑠

𝑞𝑠,𝑡 · Pr [𝑣𝑠 ≥ 𝜏]
(
E
𝑣𝑠

[
(𝑣𝑠 − 𝜏)+

��� 𝑣𝑠 ≥ 𝜏

]
+ Sur∗

)
, (13)

where in the first equality𝑊𝑇−𝑡
𝑠 denotes the𝑇−𝑡 randomwalk from

𝑠 ; the inequality holds, since max(𝑎, 𝑏) ≤ 𝑎+𝑏 for non negative 𝑎, 𝑏,

the value max(𝑣𝑠 (ℓ ) − 𝜏)+ of the𝑇 − 𝑡 walk from 𝑠 is not more than

max(𝑣𝑠 (ℓ ) −𝜏)+ of the𝑇 step walk from 𝑠 , and Sur∗ is the maximum

expectation of max(𝑣𝑠 (ℓ )−𝜏)+ achieved at the starting state 𝑠∗. Now,
we combine all bounds together to get the desired result. First, we

get the following from inequality (13) using equation (11)

Sur∗ · (1 −𝑄) ≤
∑︁
𝑡,𝑠

𝑞𝑠,𝑡 · Pr [𝑣𝑠 ≥ 𝜏] E
𝑣𝑠

[
(𝑣𝑠 − 𝜏)+

��� 𝑣𝑠 ≥ 𝜏

]
.

Next, by inequality (12) we have Sur∗ · (1−𝑄) ≥ 𝜏 · (1−𝑄). Finally,
we apply the last two bounds to (10) and get

A(𝑠∗) ≥ 𝑄 · 𝜏 + Sur∗ · (1 −𝑄) ≥ 𝑄 · 𝜏 + 𝜏 · (1 −𝑄) = 𝜏 .

This concludes the proof, as 𝜏 = 0.5 · prophet. □

Remark 2. Note that for the Markov Chain 𝑀PI and 𝑇 = 𝑛, the
starting position at 𝑠 (1) = 𝑠1 dominates any other choice of the
starting position. Thus our Markov Chain with free starting point
generalizes the classic PI.

5 MULTI-UNIT SETTING
In this section, we study the generalization of multi-unit PI from

the optimal stopping theory to our Markov chain setting. In the

multi-unit PI, one can use up to 𝑘 ≥ 1 copies of the resource instead

of 1 unit in the classical PI. The multi-unit prophet inequality refers

to the competitive ratio of 1 − 𝑜 (1) between the expected reward

of the best online algorithm and the offline optimum (the prophet).

Multi-unit PI can be viewed as a special case of online resource
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allocation problem with a single resource of capacity 𝐶 = 𝑘 . The

corresponding Markov Chain that describes standard multi-unit PI

is exactly the same Markov chain as in the previous section. We

would like to have an 1−𝑜 (1) approximation analogue to multi-unit

PI for more general Markov Chains. Note that we cannot achieve

an 1 − 𝑜 (1) approximation (even Ω(1) approximation) without the

power to choose the starting state of our random walk, as was

discussed in the previous section. It turns out that this power is still

not sufficient to achieve an 1 − 𝑜 (1) approximation for large 𝑘 (see

the counter-example on the figure 3 below).

Counter-Example. The Markov chain 𝑀𝑐
first goes through a

path with 𝑘 states of identical deterministic value 𝑣 = 1. Then

the random walk would either go to a path with 𝑘/2 states with
identical deterministic value 𝑣 = 2, or go to a path with 𝑘/3 states
with identical deterministic value 𝑣 = 3, each path is chosen with

half probability.

Figure 3: counter-example

The offline optimum sees which path the random walk followed

after the first stage and, thus, can decide how many resources in the

first stage it should consume. Hence, the expected value of offline

optimum is
1

2
· 3𝑘

2
+ 1

2
· 5𝑘

3
= 19𝑘

12
. The best starting state for the

online algorithm is the leftmost state (for example, if it picks a

starting state on one of the paths in the second stage its reward

would not be larger than 2 · 𝑘/2 = 𝑘 = 3 · 𝑘/3). Now, when the

online algorithm starts from the leftmost state, it must decide how

many resources to take in the first stage without knowing which

path the random walk will follow in the second stage. The best

expected value the online algorithm can achieve is 3𝑘/2 (Denote
𝑚 as the number of resources an online algorithm reserves for the

second stage. It is clear that𝑚 should be between 𝑘/3 and 𝑘/2 for
the optimal algorithm. Thus the optimal online reward should be

no more than 𝑘 −𝑚 + 0.5 ·𝑚 · 2 + 0.5 · 𝑘/3 · 3 = 3𝑘/2). I.e., the
competitive ratio of any online algorithm is no better than

18

19
, a

constant smaller than 1 for any 𝑘 .

When compared to the classic multi-unit PI where we have full

information of all distributions beforehand, a random walk, like in

the example above, may visit quite different sets of states and also

quite a different number of times. On the other hand, if we want

to reach an 1 − 𝑜 (1) approximation, we could afford to make only

a few different choices compared to the offline optimum. This is

clearly impossible as the previous example has demonstrated.

Therefore, we need a stronger assumption on the Markov chain

than the choice of the starting state. Specifically, we assume that

the Markov chain is recurrent and our random walk is significantly

longer than the hitting time Ht. Recurrence of𝑀 ensures that every

state will be visited eventually, and, as we show below, the assump-

tion on the length of the random walk enables us to obtain good

concentration bounds on the number of visits to every state. This

gives us a power to make a good prediction about the set of visited

distributions (note that this set is fixed in the classic multi-unit

PI). This assumption often holds in practice, as the Markov Chain

that could be reasonably inferred from data is rather small (most

likely a constant number of states). For example, the Markov Chain

may capture a daily cycle of the bidders’ behavior, while the time

horizon for the optimization could be a month.

The following theorem shows how we can get an 1 − 𝑜 (1) ap-
proximation guarantee with such power. The main idea is that with

an accurate enough prediction on the (multi) set of visited states, if

we use the same online algorithm, as in the classic setting for the

prediction, we get the desired approximation result.

The benchmark kprophet for the 𝑘-unit PI is as follows

kprophet = max

𝑠∈𝑁
E

𝑊 ∼𝑀 (𝑠 )

[
E
v∼F

[
max

|𝐾 |=𝑘

{∑︁
𝑖∈𝐾

𝑣𝑠 (𝑖 )

}]]
, (14)

Let ℓ𝑠 be the expected number of visits to each state 𝑠 . The

following lemma establishes a concentration bound on the number

of visits to each state (its full proof is deferred to Appendix).

Lemma 5. For any 0 < 𝜀 < 0.5, and any state 𝑠 ∈ 𝑁 , if 𝑇 =

16𝑒 · Ht
𝜀2
·
(
ln

(
Ht

Rt(𝑠 )

)
+ 2

)
· 1.1Δ
1−𝜀 , for any constant Δ ≥ 1

Pr [number of visits to 𝑠 ≥ (1 − 𝜀) · ℓ𝑠 ] ≥ 1 − 𝑒−Δ

Proof Idea. The number of visits to any fixed state 𝑠 is tightly

connected with the sum of i.i.d. random variables 𝑋𝑖 which are

distributed as the random variable 𝑋 describing return time to 𝑠 .

Its expectation is E [𝑋 ] = Rt(𝑠) = 1

𝑤𝑠
, and it has exponentially

decreasing tail probability related to the hitting time Ht. Our main

technical challenge is to extend Chernoff bound from bounded r.v.

(like Bernoulli) to r.v. with an exponential tail bound. □

Theorem 6. If 𝑘 ≥ 2 log(1/𝜀 )
𝜀2

and 𝑇 is at least the number stated in
Lemma 5, there exists an online algorithm with expected reward of(

1 − 𝑒−Δ
)
· (1 − 2𝜀) · kprophet

Proof. We use the following convex program, known as the

ex-ante relaxation in the mechanism design literature, as an upper

bound on kprophet. Let 𝑥𝑠 be the expected number of requests

served by any given algorithm in a state 𝑠 ∈ 𝑁 . Then, the algo-

rithm’s total expected reward from state 𝑠 is upper bounded4 by

the following quantity 𝑟𝑠 (𝑥𝑠 ):

𝑟𝑠 (𝑥𝑠 )
def

== ℓ𝑠 · E [𝑣𝑠 | 𝑣𝑠 ≥ 𝜃𝑠 (𝑥𝑠 )] ,

where the threshold 𝜃𝑠 (𝑥𝑠 ) satisfies Pr [𝑣𝑠 ≥ 𝜃𝑠 (𝑥𝑠 )] = 𝑥𝑠
ℓ𝑠
. In the

ex-ante relaxation the function 𝑟𝑠 is concave in 𝑥𝑠 . The ex-ante

4
The idea behind this relaxation is to let the offline algorithm satisfy the capacity

constraint in expectation over the instance randomness, thus making its decisions

independent across different states and/or distributions.
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relaxation of the benchmark kprophet is as follows,

max

x
:

∑︁
𝑠∈𝑁

𝑟𝑠 (𝑥𝑠 ) ≥ kprophet

subject to :

∑︁
𝑠∈𝑁

𝑥𝑠 ≤ 𝑘 ; 𝑥𝑠 ≤ ℓ𝑠 , ∀𝑠 ∈ 𝑁 .

This program can be solved efficiently andwe use (𝑥∗𝑠 )𝑠∈𝑁 to denote

its optimal solution. We have kprophet ≤ ∑
𝑠 𝑟𝑠 (𝑥∗𝑠 ).

Next, we present our online algorithm:

• For each state 𝑠 , upon the first (1 − 𝜀)ℓ𝑠 visits to 𝑠 , we serve
the request if and only if 𝑣𝑠 ≥ 𝜃𝑠 (𝑥∗𝑠 ) and there is still some

resource left;

• We completely ignore 𝑠 after the first (1 − 𝜀)ℓ𝑠 visits.
We study the probability that the budget 𝑘 is exhausted by our al-

gorithm. At each visit to state 𝑠 , we consume a unit of the resource

with probability
𝑥𝑠∗
ℓ𝑠

. Let 𝑦𝑠 be the summation of (1−𝜀) · ℓ𝑠 i.i.d. ran-
dom {0, 1} variables, each is realized with probability 𝑥𝑠∗

ℓ𝑠
. Then, the

random variable 𝑦𝑠 stochastically dominates the random number

of requests served by our algorithm. Consequently, the probability

that our budget is exhausted is upper bounded by the probability

that

∑
𝑠 𝑦𝑠 > 𝑘 . Observe that E [∑𝑠 𝑦𝑠 ] = (1 − 𝜀)∑𝑠 𝑥∗𝑠 = (1 − 𝜀) · 𝑘 .

By a standard Chernoff bound
5
, we have

Pr [budget exhausted] ≤ Pr

[∑︁
𝑠

𝑦𝑠 > 𝑘

]
≤ exp(−𝑘𝜀2/2) ≤ 𝜀,

where the last inequality holds as 𝑘 ≥ 2 ln(1/𝜀 )
𝜀2

by the assumption.

Finally, we calculate the expected gain of our algorithm from

each state 𝑠 . We visit each state 𝑠 with probability at least (1− 𝑒−Δ)
more than (1− 𝜀)ℓ𝑠 times by Lemma 5. Per each of the first (1− 𝜀)ℓ𝑠
visits, our expected gain is E [𝑣𝑠 | 𝑣𝑠 ≥ 𝜃𝑠 (𝑥∗𝑠 )] as long as we still

have the budget. That is, our total expected gain from 𝑠 is at least(
1 − 𝑒−Δ

)
·

∑︁
𝑡≤(1−𝜀 )ℓ𝑠

(
E

[
𝑣𝑠 | 𝑣𝑠 ≥ 𝜃𝑠 (𝑥∗𝑠 )

]
· Pr [budget not exhausted at 𝑡-th visit to 𝑠]

)
≥

(
1 − 𝑒−Δ

)
· (1 − 𝜀) · (1 − 𝜀) · ℓ𝑠 · E

[
𝑣𝑠 | 𝑣𝑠 ≥ 𝜃𝑠 (𝑥∗𝑠 )

]
≥

(
1 − 𝑒−Δ

)
· (1 − 2𝜀) · 𝑟𝑠 (𝑥∗𝑠 )

Summing over all states 𝑠 of the Markov chain, we conclude that

E [A] ≥
(
1 − 𝑒−Δ

)
· (1 − 2𝜀) ·

∑︁
𝑠

𝑟𝑠 (𝑥∗𝑠 )

≥
(
1 − 𝑒−Δ

)
· (1 − 2𝜀) · kprophet

□

The above theorem guarantees a 1−𝜀 approximation to the offline

optimum for 𝑘 = Ω̃
(
1

𝜀2

)
and 𝑇 = Ω̃

(
Ht
𝜀2

)
(as usual Ω̃ notation

hides logarithmic factors). The quadratic dependency of 𝑘 on 1/𝜀 is
unavoidable even in the classic multi-unit PI. The dependency of 𝑇

on hitting time Ht is unavoidable even if we want to get a constant

approximation to kprophet; the quadratic dependency on 1/𝜀 is
5
I.e., that a sum 𝑋 of i.i.d. random variables with expectation 𝜇 = (1 − 𝜀 )𝑘 satisfies

Pr [𝑋 ≥ (1 + 𝛿 )𝜇 ] ≤ 𝑒−𝛿2𝜇/(2+𝛿 ) = 𝑒−𝑘𝜀2/(2−𝜀 ) < 𝑒−𝑘𝜀2/2 for 𝛿 = 1

1−𝜀 − 1.

also unavoidable for the ex-ante relaxation approach, as we need

to predict the number of visits to each state 𝑠 with accuracy 1 ± 𝜀.

Remark 3. Our results in this section extend to multi-resource setting
and non-uniform costs in different states. Indeed, Lemma 5 still holds
and the ex-ante relaxation can be generalized if we replace budget
constraint by

∑
𝑠 𝑥𝑠 ·𝑐𝑖 (𝑠) ≤ 𝐶𝑖 for each resource type 𝑖 ∈ [𝑚]. As long

as the small-bid assumption holds, i.e.,max𝑖,𝑠 𝑐𝑖 (𝑠)/𝐶𝑖 (𝑠) → 0 (which
corresponds to 𝑘 → ∞ in the above stylized model), our algorithm
achieves an 1 − 𝑜 (1) approximation. The analysis is essentially the
same as above. We focus on the single-resource and multi-unit setting
to avoid cumbersome notations.
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A PROOF OF LEMMA 5
Let us first fix a state 𝑠 ∈ 𝑁 . Let 𝜉 be the random variable equal to

the number of visits of the random walk to state 𝑠 . In the Lemma we

need to show that 𝜉 is well concentrated around its expected value.

The behavior of 𝜉 is tightly connected to another random variable

𝑋 – the number of steps it takes random walk to return to state

𝑠 (starting from 𝑠). Specifically, consider i.i.d. random variables

(𝑋𝑖 )∞𝑖=1 with the same distribution as 𝑋 . A random variable 𝑋𝑖
represents the number of steps between 𝑖-th visit and (𝑖 +1)-th visit

to 𝑠 . We also define a random variable 𝑋0 – the number of steps it

takes to reach state 𝑠 for the first time. Then

𝜉 = max

𝑖

{
𝑖
�� 𝑋0 + 𝑋1 + . . . + 𝑋𝑖 ≤ 𝑇

}
+ 1,

if 𝑋0 > 𝑇 , we let 𝑖 = −1. In general, we would like to apply a

Chernoff type bound to the sum 𝑋1 + 𝑋2 + . . . + 𝑋 𝑗 of i.i.d random

variables, but, unfortunately, 𝑋𝑖 is unbounded as the random walk

may keep indefinitely avoiding state 𝑠 . Luckily, we have the follow-

ing exponential tail probability bound on each random variable 𝑋𝑖 .

Claim 7. ∀𝑖 ≥ 0, 𝑗 ∈ N Pr [𝑋𝑖 ≥ 𝑗 · 𝑒 · Ht] ≤ 𝑒− 𝑗 .

Proof. Observe that for 𝑗 = 1, we can apply Markov inequality

to the random variable 𝜂 (𝑠′) – the number of steps to reach 𝑠 from

another state 𝑠′ ∈ 𝑁 . Indeed, E [𝜂] ≤ Ht, by definition of the hitting

time for any 𝑠′ ∈ 𝑁 .

For 𝑗 > 1, the random walk does not reach 𝑠 within the first

𝑒 · Ht steps with probability ≤ 1/𝑒 . If it fails, the walk gets to a

state 𝑠′′ and then it has another chance to reach 𝑠 in the next 𝑒 · Ht
steps; again it may only fail with probability ≤ 1/𝑒 . We repeat the

argument 𝑗 times, which gives the desired upper bound on the

probability of not reaching 𝑠 in 𝑗 · 𝑒 · Ht steps. □

For convenience of notations, we define Γ
def

== 2𝑒 · Ht and extend

the tail bound from Claim 7 for 𝑗 ∈ N to real values 𝛼 ∈ R≥1.

Pr [𝑋𝑖 ≥ Γ · 𝛼] ≤ 𝑒−⌊2𝛼 ⌋ ≤ 𝑒−𝛼 , ∀𝑖 ∈ N0, 𝛼 ∈ R≥1 . (15)

Now, by applying Chernoff bound method for 𝑡 ∈ R>0 we get

Pr
[∑︁𝑗

𝑖=1
𝑋𝑖 ≥ 𝑎

]
= Pr

[
𝑒
∑

𝑖≤ 𝑗 𝑡 ·𝑋𝑖 ≥ 𝑒𝑡 ·𝑎
]
≤ 𝑒−𝑡 ·𝑎 ·

(
E

[
𝑒𝑡 ·𝑋

] ) 𝑗
,

where to get the inequality, we use Markov inequality and the fact

that E [𝑒
∑

𝑖≤ 𝑗 𝑡 ·𝑋𝑖 ] = E [𝑒𝑡 ·𝑋 ] 𝑗 . Next, we need to get an upper bound

on E [𝑒𝑡 ·𝑋 ]. To do this we use the constraint (15) and the fact
6
that

E [𝑋 ] = Rt(𝑠).

Claim 8. The following random variable 𝑋 ∗ maximizes E [𝑒𝑡 ·𝑋 ]
under the constraint (15) and E [𝑋 ] = Rt(𝑠) = 1

𝑤𝑠
.

𝑋 ∗ =


PDF 𝑓 (Γ · 𝑥) = 𝑒−𝑥

Γ
, for 𝑥 ∈ [𝑐𝑜 , +∞)

Pr
[
𝑋 ∗ = 0

]
= 1 − 𝑒−𝑐𝑜 , point mass at 0.

(16)

Where 𝑐𝑜 satisfies Γ · (𝑐𝑜 + 1)𝑒−𝑐𝑜 = 1

𝑤𝑠
.

Proof. First, note that the constraint (15) is tight for random

variable 𝑋 ∗ for all 𝑥 ≥ 𝑐𝑜 and that E [𝑋 ∗] = Rt(𝑠). We will show

that 𝑋 ∗ maximizes E [𝑒𝑡 ·𝑋 ] for the relaxed optimization where

constraint (15) holds only for 𝑥 ≥ 𝑐𝑜 .

Observe that 𝑡 must be strictly smaller than
1

Γ for E [𝑒𝑋 ·𝑡 ] to
converge. For each 𝑡 < 1

Γ , we can discretize support of𝑋 into integer

multiples of a small 𝜀 > 0 up to a large constant 𝐵 (such that E [𝑒𝑇 ·𝑋 ·
I [𝑋 ∗ > 𝐵]] is negligibly small for the given tail bound (15)), so that

the support is a finite set. Thenwe optimize E [𝑒𝑡 ·𝑋 ] for𝑋 supported

on this finite set with the constraints (15) and E [𝑋 ] = Rt(𝑠). This
is optimization of a continuous function on a compact set, thus it

achieves maximum at a finitely supported random variable𝑋𝑜 . Note

that the expectation E [𝑒𝑡 ·𝑋𝑜 ] is close to the expectation E [𝑒𝑡 ·𝑋 ] of
the continuous random variable 𝑋 .

Now, we observe that if PDF of 𝑋 0
at 𝑧 > 0 is strictly smaller

than the respective PDF (its discretized version) of 𝑋 ∗, Pr [𝑣 = 𝑧] <
𝑒−𝑧/Γ − 𝑒−(𝑧+𝜀 )/Γ , and 𝑋𝑜 has a point 0 < 𝑦 < 𝑧 with positive

PDF, then we can feasibly modify 𝑋𝑜 and strictly increase E [𝑒𝑡 ·𝑋𝑜 ].
Indeed, without loss of generality let us consider such 𝑦 that is the

closest to 𝑧. We can move a small 𝛿 > 0 mass from𝑦 (Pr [𝑋𝑜 = 𝑦] ←
Pr [𝑋𝑜 = 𝑦] − 𝛿) to 𝑧 ( Pr [𝑋𝑜 = 𝑧] ← Pr [𝑋𝑜 = 𝑦] + 𝑦

𝑧 · 𝛿 ) and 0

(Pr [𝑋𝑜 = 0] ← Pr [𝑋𝑜 = 0]+ 𝑧−𝑦𝑧 ·𝛿) so that E [𝑋
𝑜 ] = Rt(𝑠) and (15)

is still satisfied ( (15) does not change for 𝛼 > 𝑧/Γ, (15) was not tight
for Γ ·𝛼 ∈ [𝑦, 𝑧], and (15) just gets extra slack for Γ ·𝛼 < 𝑦). As 𝑒𝑡 ·𝑥 is
a strictly convex function, the latter modification strictly increases

the objective E [𝑒𝑡 ·𝑋𝑜 ] – a contradiction tomaximality of𝑋𝑜 . Hence,

the PDF of 𝑋𝑜 is equal to the PDF of 𝑋 ∗ (its discretized version) on

the interval (𝑎0, 𝐵], it is smaller than PDF of 𝑋 ∗ at 𝑎0, and it has

PDF 0 on (0, 𝑎0). Given the constraint E [𝑋𝑜 ] = E [𝑋 ∗] = Rt(𝑠) it
means that 𝑋𝑜 = 𝑋 ∗. □

Therefore, E
[
𝑒𝑡𝑋

]
≤ E

[
𝑒𝑡𝑋

∗ ]
= 1 − 𝑒−𝑐𝑜 + 1

1 − Γ𝑡 𝑒
(Γ𝑡−1)𝑐𝑜 .

To simplify notation let 𝑔(𝑡) def== ln(1 − 𝑒−𝑐𝑜 + 1

1−Γ𝑡 𝑒
(Γ𝑡−1)𝑐𝑜 ). We

first set 𝑎 = 𝑗 · Rt(𝑠) · (1 + 𝜀) in the Chernoff bound. Then,

Pr

[
𝑗∑︁
𝑖=1

𝑋𝑖 ≥ 𝑎

]
≤ 𝑒−𝑡𝑎 ·𝑒 𝑗 ·𝑔 (𝑡 ) = 𝑒𝑥𝑝

[
𝑗 ·

(
𝑔(𝑡) − 𝑡 · Rt(𝑠) · (1 + 𝜀)

)]
.

6
A well known fact about return time and stationary distribution of a Markov chain.
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We choose 𝑡
def

== 𝜀
2𝑐𝑜Γ

and estimate 𝑔(𝑡) − 𝑡 ·Rt(𝑠) · (1+ 𝜀) as follows.

𝑔(𝑡) − 𝑡 · Rt(𝑠) · (1+ 𝜀) = ln

(
1 − 𝑒−𝑐𝑜 + 𝑒 (Γ𝑡−1)𝑐𝑜

1 − Γ𝑡

)
− 𝑡 (1 + 𝜀)

𝑤𝑠
≤

𝑒−𝑐𝑜 ·
(
𝑒𝑡 ·Γ ·𝑐𝑜

1 − Γ𝑡 − 1
)
− 𝑡 (1 + 𝜀)

𝑤𝑠
=

Rt(𝑠)
(1 + 𝑐𝑜 )Γ

(
𝑒𝜀/2

1 − 𝜀
2𝑐𝑜

− 1
)
− 𝜀 (1 + 𝜀)
2Γ𝑐𝑜𝑤𝑠

≤ 1

(1 + 𝑐𝑜 )Γ𝑤𝑠

(
1 + 𝜀

2
+ 𝜀2

4

1 − 𝜀
2𝑐𝑜

− 1
)
− 𝜀 (1 + 𝜀)

2Γ𝑐𝑜𝑤𝑠
=

𝜀2 · Rt(𝑠)
(2𝑐𝑜 − 𝜀)Γ

(
−1
2

+ 1

2𝑐𝑜 (1 + 𝑐𝑜 )
+ 𝜀

2𝑐𝑜

)
≤ −𝜀

2 · Rt(𝑠)
8𝑐𝑜Γ

,

where the first inequality holds as ln(1 + 𝑥) ≤ 𝑥 for any 𝑥 ≥ −1;
the second equality holds as 𝑡 = 𝜀

2𝑐𝑜Γ
and 𝑒−𝑐𝑜 =

Rt(𝑠 )
Γ (𝑐𝑜+1) ; the

second inequality holds as 𝑒𝑥 ≤ 1 +𝑥 +𝑥2 for any 𝑥 < 1.79; the last

inequality holds as 𝑐𝑜 ≥ 2 from equation 2𝑒 (𝑐𝑜 +1)𝑒−𝑐𝑜 =
Rt(𝑠 )
Ht ≤ 1

and 𝜀 < 0.5. When we plug this estimate in the Chernoff bound we

get

Pr

[
𝑗∑︁
𝑖=1

𝑋𝑖 ≥ 𝑗 · Rt(𝑠) (1 + 𝜀)
]
≤ exp

[
− 𝑗 · 𝜀2 · Rt(𝑠)

16𝑒 · 𝑐𝑜 · Ht

]
.

From 2𝑒 · Ht · (𝑐𝑜 + 1)𝑒−𝑐𝑜 = Rt(𝑠), we have 𝑐𝑜 ln(𝑐𝑜 + 1) =
ln

(
Ht

Rt(𝑠 )

)
+ 1 + ln(2). Thus, 𝑐𝑜 ≤ ln

(
Ht

Rt(𝑠 )

)
+ 2 as 𝑐𝑜 > 2 and

ln(𝑐𝑜 + 1) > 1.

Finally, we are ready to get the estimate on 𝜉 – the total number

of visits to state 𝑠 . Recall that 𝑇 = 16𝑒 · Ht
𝜀2
·
(
ln

(
Ht

Rt(𝑠 )

)
+ 2

)
· 1.1·Δ

1−𝜀 .

We set 𝑗 =
𝑇 (1−𝜀 )
Rt(𝑠 ) , then the Chernoff bound gives us

Pr

[
𝑗∑︁
𝑖=1

𝑋𝑖 ≥ 𝑇 (1 − 𝜀2)
]
≤ exp


−𝜀2 ·𝑇 (1 − 𝜀)

16𝑒 ·
(
ln

(
Ht

Rt(𝑠 )

)
+ 2

)
· Ht

 ≤ 𝑒−1.1Δ

On the other hand, Pr [𝑋0 ≥ 𝜀2𝑇 ] ≤ 𝑒−32𝑒 ·Δ by Claim 7. Thus the

probability that either of 𝑋0 ≤ 𝜀2𝑇 and

∑𝑗

𝑖=1
𝑋𝑖 ≥ 𝑇 (1 − 𝜀2) is not

more than 1 − (1 − 𝑒−32𝑒 ·Δ) (1 − 𝑒−1.1Δ) < 𝑒−Δ. I.e., 𝜉 ≥ 𝑗 with

probability at least 1 − 𝑒−Δ.

B PRELIMINARY EXPERIMENTS
We conducted preliminary experiments on real data to test our

Markovian modeling for the online resource allocation problem.

Specifically, we used ACN-Data [Lee et al. 2019] of 50000 EV(electric

vehicle) charging sessions and modeled it as a resource allocation

problem as follows.

The charging sessions are sorted in time and thus can be naturally

treated as online requests. For each session we look at the following

features: connection time, required electricity, and the user ID. The

value of serving a request is defined as the number of charging

sessions for the respective user ID in the previous 3 months prior

to the request. Every request consumes a certain amount of electric

power based on the connection time and required electricity of

the respective charging session. We artificially introduce a limited

capacity on the electric power of the station, so that it could not

serve all requests. This leads to the following resource allocation

problem: each time an EV comes to the station, we need to decide

whether to serve its charging request based on its value with the

goal of maximizing the total value of the served requests.

We choose the data of each month from 4/2019 to 12/2019 be
the online arrival request stream. Every time we use the data from

the previous three months as our training data to learn the Markov

transition matrix, then we solve online resource allocation prob-

lem on the next month data. We predict the number of requests in

the next month with an average number of requests in the previ-

ous three months. We conduct experiments with different power

capacity limitations of 1000, 2000, . . . , 7000 kwh. We use dynamic

programming to solve the MDP as described in section 3, and use

the corresponding threshold vectors to decide whether to serve the

online requests.

To construct a Markov chain, we apply optimal 𝑘-means clus-

tering algorithm in one dimension based on the values and divide

the requests into 5, 10, 20 states. Then we count the number of

transitions from one state to another for each ordered 2-state pair

and derive the Markov Chain transition matrix by the frequency of

transitions.

We compare our algorithm to the OLA algorithm [Agrawal et al.

2014], a primal-dual based algorithm for the unknown i.i.d setting.

The algorithm computes optimal dual price on training data and

then makes online decisions according to the dual price.

Figure 4: total value of the served requests

Figure 4 summarizes our experiments, whereMarkov(5), Markov(10),

Markov(20) denote the results by our Markov chain algorithm with

5, 10, 20 states respectively, OfflineOPT denotes the offline optimum,

Primal-Dual denotes the result by the OLA algorithm [Agrawal et al.

2014]. On each capacity level, Markov chain algorithms performs

consistently better over the OLA algorithm and is not particularly

sensitive on the number of states on this data set. The above obser-

vation together with the fact that the OLA algorithm is near optimal

for the unknown i.i.d. setting, our preliminary experiment suggests

that the i.i.d. assumption might be too optimistic for real world data

and our Markov Chain model might be a good alternative modeling

choice.
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